
CMSC 420: Spring 2022

CMSC 420 (0101) - Midterm Exam 2

Problem 1. (20 points) This problem involves splay trees. In both cases, apply the splay-tree
algorithm given in the lecture notes.
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Figure 1: Splay tree operations

(a) (10 points) Show the steps involved in operation insert(5) for the tree in the figure.
Indicate what splays are performed, and what trees result from each splay. Also indicate
what node(s) are created, and show the final tree after insertion.

(b) (10 points) Show the steps involved in operation delete(6) for the tree in the figure. In
particular, indicate what splays are performed, and what trees result from each splay.
Also indicate what node(s) are removed, and show the final tree after deletion.

Problem 2. (30 points) Short answer questions. Unless requested, explanations are not required,
but may always be given to help with partial credit.

(a) (4 points) By mistake, two keys in your treap happen to have the same priority. When
you attempt to execute find, which of the following is a possible consequence? (Select
all that apply.)

(1) It might go into an infinite loop

(2) It might return the wrong result

(3) It might take longer than O(log n) expected time

(4) There are no significant negative consequences

(b) (4 points) You have a splay tree storing n keys x1 < x2 < · · · < xn. Suppose that you
perform n consecutive splay operations on these keys in sorted order:

splay(x1), splay(x2), . . . , splay(xn).

Which of the following is the total running time for all of these operations? (Give the
tightest correct bound.)

(1) O(n) (worst-case)
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(2) O(n log n) (worst-case)

(3) O(n) (expected case)

(4) O(n log n) (expected case)

(5) None of the above

(c) (6 points) Consider a B-tree of order m = 13. Answer the following questions for a single
node that is not the root and not a leaf.

(a) What is the maximum number of children: Answer:

(b) What is the minimum number of children: Answer:

(c) What is the maximum number of keys: Answer:

(d) What is the minimum number of keys: Answer:

(d) (2 points) True or false: After performing an insertion in a scapegoat tree (but before any
rebuilding), two or more nodes on the search path may satisfy the scapegoat condition
(size(p.child)/size(p) > 2/3).

(e) (2 points) True or false: As part of performing an insertion in a scapegoat tree, two or
more subtrees may be rebuilt.

(f) (4 points) In high dimensional spaces (say, dimensions greater than 10), kd-trees are
preferred over quadtrees. Why is this?

(g) (4 points) Given a balanced kd-tree storing n points in 2-dimensional space, where we
alternate the splitting axes, and given an axis-parallel line `, what is the maximum
number of nodes whose cell intersects `?

(1) O(log n)

(2) O(
√
n)

(3) O(n)

(4) None of the above

(h) (4 points) Repeat (g), but this time ` may have an arbitrary slope.

Problem 3. (15 points) We usually like our trees to be balanced. Here we will consider unbalanced
trees. Given a node p, recall that size(p) is the number of nodes in p’s subtree. A binary tree
is left-heavy if for each node p, where size(p) ≥ 3, we have size(p.left)/size(p) ≥ 2/3
(see the figure below). Let T be a left-heavy tree that contains n nodes.

(a) (8 points) Consider any left-heavy tree T with n nodes, and let s be the leftmost node
in the tree. Prove that depth(s) ≥ log3/2 n. (If you are super careful in your proof, you
may discover this is not quite true. The actual bound is (log3/2 n)− c, for a constant c.
Don’t worry about this small correction term.)

(b) (7 points) Consider any left-heavy tree T with n nodes, and let t be the rightmost node
in the tree. Prove that depth(t) ≤ log3 n.
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Figure 2: A left-heavy tree.

Problem 4. (15 points) You are given a set P = {p1, . . . , pn} of n points in 2D space, all having
positive x- and y-coordinates (see Fig. 3(a)). They have been stored in a perfectly balanced
kd-tree using alternating cutting dimensions, x, y, x, y, . . .. The kd-tree stores a bounding box
bbox that contains all the points and a pointer root to the root of the kd-tree.
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Figure 3: Platform dropping queries.

In a platform-dropping query, we are given a point q = (qx, qy) with positive coordinates. This
defines a horizontal segment running from the y-axis to q (see Fig. 3(b)). Our objective is to
report the first point p ∈ P that would be hit if we drop the platform. Formally, this point
has the maximum y-coordinate such that px ≤ qx and py ≤ qy (see Fig. 3(c)).

In this problem we will derive an efficient algorithm to answer such queries. You will fill in
the missing gaps to a recursive helper function. The helper is given the query point q, the
current node p being visited (which might be null), the associated rectangular cell for this
node, and best, the best answer seen so far. The function returns the new best point.

(a) (4 points) Give a condition on cell so that no point in p’s subtree can be hit by the
falling platform? Express your answer in terms of q = (q.x, q.y) and the low and
high cell corner points cell.lo and cell.hi.

(b) (3 points) What conditions must p.point satisfy to replace best as the new best answer
to the query?

(c) (4 points) Suppose that cell lies entirely to the left of q (that is, cell.hi.x ≤ q.x),
and further suppose that p has a cutting dimension of 1 (horizontal cut). Explain why
only one of p’s children need be searched for the answer. How would you determine
which child it is?
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(d) (2 points) Based on your above answers, fill in the boxes boxes to complete the helper
function for answering platform dropping queries. It is given the query point q, the
current node p being visited (which might be null), the associated rectangular cell for
this node, and best, the best answer seen so far. The function returns the new best
point. (If there is not change from the above, you can just say “Same as (a)”.)

Note: If the structure of our helper function does not make sense to you, you can
optionally provide your own helper function in its entirety at the end of the exam.
Please put in note in the first fill-in box that you are doing this.

Point platformDrop(Point q, KDNode p, Rectangle cell, Point best) {

if (p == null) return best

if ( ) return best

if ( ) best = p.point

Rectangle leftCell = cell.leftPart(p.cutDim, p.point)

Rectangle rightCell = cell.rightPart(p.cutDim, p.point)

if (cell.hi.x <= q.x && p.cutDim == 1) {

if ( )

best = platformDrop(q, p.left, leftCell, best)

else

best = platformDrop(q, p.right, rightCell, best)

} else {

best = platformDrop(q, p.right, rightCell, best)

best = platformDrop(q, p.left, leftCell, best)

}

return best

}

(c)

(b)

(a)

(e) (2 points) What is the initial call to the helper function?

Problem 5. (20 points)

(a) (10 points) Suppose that you are given a standard rooted binary tree, where in addition
to left and right, each node has a parent link. (There are no keys.)

class Node { // a node in the tree

Node left // left child

Node right // right child

Node parent // parent (null if root)

}

Present pseudocode for a function Node inorderPred(Node p), which returns a pointer
to inorder predecessor of p. If p has no inorder predecessor, it should return null.
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p

inorderPred(p) = q
q

Briefly explain how your function works. If you wish, you may define additional helper
functions. Your function should run in time proportional to the height of the tree.

(b) (10 points) Suppose that we are given a B-tree of order M , for some M ≥ 3. Let us
assume the following node structure:

class BNode { // a node in a B-tree

int nc // number of children

BNode child[M] // children pointers

Key key[M-1] // keys

BNode parent // parent

}

The children are child[0..nc-1] and the keys are key[0..nc-2]. The entry key[i]

sits between subtrees child[i] and child[i+1].

Present pseudocode for a function Key inorderPred(BNode p, int i), which returns
the key of the B-tree that immediately precedes p.key[i] in sorted order.
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inorderPred(p,0) = 18

inorderPred(p,1) = 21

Briefly explain how your function works. If you wish, you may define additional helper
functions. Your function should run in time proportional to the height of the tree
(assuming M is a constant).

Hint: There are a number of cases. You can get partial credit if you can solve some of
the subcases correctly. For example, you might start by considering what happens when
p is a leaf node.
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