
CMSC 420: Spring 2022

Homework 1: Basic Data Structures and Trees

Handed out Tue, Feb 8. Due at 11:59pm, Tue, Feb 15. Point values given with each problem
may vary. Please see the notes at the end about submission instructions.

Problem 1. (25 points) Answer the following questions involving the rooted trees shown in Fig. 1.

(a) (4 points) Consider the rooted tree of Fig. 1(a). Draw a figure showing its representation
in the “first-child/next-sibling” form.

(a) (b)

aroot

b

f

c

g h

d

a

b

f

dc

g h

i

j l m
i j

e f

g h

cb

a

d

(c)

e

k

e

i j

root
root

Figure 1: Rooted trees.

(b) (4 points) Consider the rooted tree of Fig. 1(b) represented in the “first-child/next-
sibling” form. Draw a figure showing the equivalent rooted tree.

(c) (6 points) List the nodes of the tree of Fig. 1(a) in preorder. List them in postorder.

(d) (9 points) List the nodes of the tree of Fig. 1(c) in preorder. List them in inorder. List
them in postorder.

(e) (2 points) Consider the binary tree of Fig. 1(c). Draw a figure showing the tree with
inorder threads (as in Fig. 7 from the latex lecture notes for Lecture 3).

Problem 2. (5 points) Present pseudocode for a procedure int getHeight(Node root), which
is given the root of a tree represented using the first-child/next-sibling representation, and
returns the height of the tree. For full credit your procedure should run in time proportional
to the number of nodes in the tree. (For example, given the tree shown in Fig. 1(b), your
function would return three.)

Give a short explanation in English how your procedure works. Hint: Use recursion.

Problem 3. (5 points) You have a binary trees in which each node, in addition to having links
left, right, has a link parent, which points to the node’s parent (and note that root.parent
== null).

Present pseudocode for a function Node inorderSuccessor(Node p), which returns p’s in-
order successor, that is, the node that follows p in an inorder traversal. If p is the last
node in the inorder traversal, your function should return null. (For example, given the

1



tree shown in Fig. 1(c), inorderSuccessor(c) would return the node labeled “i” and
inorderSuccessor(h) would return the node labeled “a”.)

Give a short explanation in English how your procedure works.

Hint: You should not assume that this is a binary search tree. If you want to know whether
a node p is the left or right child of its parent, you can do “if (p == p.parent.left)”. Of
course, beware of dereferencing null pointers.

Problem 4. (5 points) Suppose that you have a rooted tree, where all the leaves are at the same
depth. We partition the nodes of the tree into levels as follows. The leaves are at level 0,
their parents are at level 1, their grandparents are at level 2, and so on up to the root, which
is at some level L (see Fig. 2). Let n denote the number of leaf nodes (all at level 0), and
generally, for 0 ≤ i ≤ L, let ni denote the number of nodes on level i of this tree.

a

f

c

g h i j k l m

b d e

Level: i ni

0 8

1 4

2 1

Figure 2: A tree with maximum level L = 2.

Suppose that the number of nodes in each level decreases by at least some constant factor,
that is, suppose that there is a fixed real number 0 < α < 1 (which does not depend on n
or L) such that ni+1 ≤ αni, for 0 ≤ i < L. Prove that there exists a constant c (depending
on α) such that L ≤ c lg n. (Recall that lg means logarithm base 2.) You should derive the
smallest value of c such that this holds.

Hint: If you have difficulty solving this, you can solve the following more concrete version for
half credit. Suppose that the number of nodes in each level decreases by at least one third,
that is, ni+1 ≤ ni/3. Prove that L ≤ (lg n)/(lg 3). (Recall that lg means logarithm base 2.)

Problem 5. (10 points) In this problem, we will consider modification and generalization of the
amortized analysis of the dynamic stack algorithm from Lecture 2. We will make two changes:
(1) we will slightly change the algorithm and cost model when expanding the stack, and (2)
we will allow the stack to contract when the number of elements gets too small.

Throughout, let n denote the number of elements in the stack, and let m denote the size of
the current array. Here is a formal description of our new dynamic stack and the actual cost
of the two stack operations. We assume that we start with an array of size m = 1 containing
n = 0 elements. Throughout, we maintain the condition that (unless the stack is empty)
m
4 < n < m.

push(x): Add x to the top of the stack and increase n by one. (This is always possible, by
our assumption that n < m).

If n < m (normal case), we are done, and the actual cost is +1. On the other hand, if
n = m (overflow case), we double the array size (setting m← 2m), allocate a new array

2



of this doubled size, copy the contents of the stack into the new array (see Fig. 3(a)).
Letting n denote the number of elements after the push, the actual cost is n + 1 (+1
for the push, and n for the time to copy the elements). Observe that the new array is
exactly half full.

(a) (b)

×
×
×

×
×
×
×

push

n = 4

m = 8

Cost = 5

×
×

×
×
×

contract

m = 4

×
×

push

m = 4

Cost = 1

×
×
×

pop

Cost = 1

Cost = 3

×

×
×
×
×

expand

n = 2 n = 3 n = 4 n = 3 n = 2

×
×

pop

Figure 3: Expanding/Shrinking stack.

pop(): If n = 0, there is nothing to pop, and we return null, at an actual cost of +1.
Otherwise, we pop the top element from the stack, and decrease n by one.

If after the pop, n > m
4 (normal case), we are done, and the actual cost is +1. On

the other hand, if after the pop we have n ≤ m
4 and m ≥ 2 (underflow case), we halve

the array size (setting m ← m
2 ), allocate a new array of this halved size, and copy the

contents of the stack into the new array (see Fig. 3(b)). Letting n denote the number of
elements after the pop, the actual cost is n + 1 (+1 for the pop, and n for the time to
copy the elements). Observe that the new array is exactly half full.

The objective of this problem is to show that, over a long sequence of operations, the amortized
cost (that is, the total actual cost divided by the number of operations) is some constant.
We assume that we start within an empty stack (n = 0 and m = 1). Define run to be the
sequence of operations starting just after the last array reallocation and running through the
next array reallocation.

(a) (5 points) Suppose that the array size is m at the start of the run (and hence n = m/2),
and the run ends with an expansion to size 2m. Prove that there exists is a constant
α1 so that the amortized cost of the run (that is, the total cost of operations divided by
the number of operations) is at most α1.

(b) (5 points) Suppose that the array size is m at the start of the run (and hence n = m/2),
and the run ends with a contraction to size m

2 . Prove that there exists is a constant α2

so that the amortized cost of the run (that is, the total cost of operations divided by the
number of operations) is at most α2.

For full credit, in each case compute the smallest value of α that works. You may assume
that n is very large, so small additive constant terms do not matter.

3



Note: Challenge problems are not graded as part of the homework. The grades are recorded
separately. After final grades have been computed, I may “bump-up” a grade that is slightly below
a cutoff threshold based on these extra points. (But there is no formal rule for this.)

Challenge Problem: Consider the setup in Problem 4 but suppose that the number of nodes
decreases even faster. In particular, suppose that ni+1 ≤

√
ni. Prove that there is a constant

c such that L ≤ c lg lgn (that is, the log of the log of n). Since
√

1 = 1, we could loop
infinitely at the root level. Let’s assume we end at level L, where nL = 2.

General note regarding coding in homeworks: A common question at the start of the semester
is “how much detail are you expecting?” You will figure this out as the semester goes on, but here
are some basic guidelines.

Prove vs. Show: If we ask you to “prove” something, we are looking for a well structured proof.
If you are applying induction, please be careful to distinguish your basis case(s) and indicate
what your induction hypothesis is. If we ask you to “show,” “explain,” or “justify”, we are
usually just expecting a brief English explanation. If you are unsure, please check.

Algorithm vs. Pseudocode: When we ask for an “algorithm” we are expecting a high-level
description of some computational process, usually in a combination of English and mathe-
matical notation (e.g., “sort the n keys and locate x using binary search”). For the latter, we
are expecting a more detailed step-by-step description that look much more like Java (e.g.,
“Node q = p.left”).

Remember that you are writing your code to be read by a human, and not a Java compiler.
Please omit extraneous details that are easily converted into Java. For example, it is easier to
understand “i = dn/me” than “int i = (int) Math.ceil((double) n / (double) m))”.

Even if we do not explicitly ask for it, whenever you give an algorithm or pseudocode, you
should always provide a brief English explanation. This helps the grader understand
what your intentions are, and if there is a small error in your code, we can often use your
explanation to understand what your actual intentions were. Even if your solution is
technically correct, we reserve the right to deduct points if it is not clear to us
why it is correct.

Submission Instructions: Please submit your assignment as a pdf file through Gradescope. Here
are a few instructions/suggestions:

� You can typeset, hand-write, or use a tablet or any combination. We just need a readable
pdf file with all the answers. Be generous with figures and examples. If there is a minor error
in your pseudo-code, but the figure illustrates that you understood the answer, we can give
partial credit.

� When you submit, Gradescope will ask you to indicate which page each solution appears on.
Please be careful in doing this! It greatly simplifies the grading process for the graders,
since Gradescope takes them right to the page where your solution starts. If done incorrectly,

4

https://www.gradescope.com


the grader may miss your answer, and you may receive a score of zero. (If so, you can appeal.
But hunting around for your answer is troublesome, and it is always best to keep the grader
in a good mood!) This takes a few minutes, so give yourself enough time if you are working
close to the deadline.

� Try to keep the answer to each subproblem (e.g. 5.2) on a single page. You can have multiple
subproblems on the same page, but Gradescope displays one one page at a time. It is easiest
to grade when everything needed is visible on the same page. If your answer spans multiple
pages, it is a good idea to indicate this to alert the grader. (E.g., write “Continued” or “See
next page” at the bottom of the page.)

� Most scanners (including your phone) do not take very good pictures of handwritten text.
For this reason, write with dark ink on white paper. Use an image-enhancing app such as
CamScanner or Genius Scan to improve the contrast.

� Writing can bleed through to the other side. To be safe, write on just one side of the paper.

� Students often ask me what typesetting system I use. I use LaTeX for text. This is commonly
used by academicians, especially in math, CS, and physics, and is worth taking the time to
learn if you are thinking about doing research. If you use LaTeX, I would suggest downloading
an IDE, such as TeXnicCenter or TeXstudio. I draw my figures using a figure editor called
IPE for drawing figures.

5

https://www.camscanner.com/
https://www.thegrizzlylabs.com/genius-scan
https://www.texniccenter.org/
https://www.texstudio.org/
http://ipe.otfried.org/

