
CMSC 420: Spring 2022

Homework 2: Search Trees

Handed out Tue, Feb 22. Due Wed, Mar 2, 11:59pm. Point values are tentative and subject to
change.

Important! Solutions will be discussed in class on Thu, Mar 3, so no late submissions will be
accepted. Turn in whatever you have completed by the due date.

Problem 1. (12 points) Consider the AVL tree shown in Fig. 1.

6

7 12

11

10

9

8

17

15

14

16 20

19

18

13

1

2

3

4

5

Figure 1: AVL Trees.

(a) (5 points) Draw the tree again, indicating the balance factors associated with each node.

(b) (7 points) Show the tree that results from the operation delete(19), after all the re-
balancing has completed. (We only need the final tree. You can provide intermediate
results for partial credit.)

Problem 2. (12 points) Consider the AA trees shown in Fig. 2.

insert(3)

13

1 7 9

5

6

8

10 15

14 16 1

delete(5)

4

5 7

6 8

3

2

(a) (b)

2

4 11

13

11

12 149 10

Figure 2: AA Trees.

1



(a) (6 points) Show the result of performing the operation insert(3) into the tree in
Fig. 2(a).

(b) (6 points) Show the result of performing the operation delete(5) from the tree in
Fig. 2(b).

(In both cases, we only need the final tree. You can provide intermediate results for partial
credit. If you don’t have two different colored pens, you can indicate red nodes with dashed
edges and/or encircle circle groups of nodes as we do in our figures.)

Problem 3. (7 points) Recall the right rotation operation for a binary tree (given in Lecture 5).

Node rotateRight(Node p) {

Node q = p.left

p.left = q.right

q.right = p

return q

}

Suppose that we wish to apply this to a threaded binary tree using inorder threads (defined
in Lecture 3). Explain what modifications (if any) are needed to perform a right rotation at
node p so that after your modified function executes, all child links and threads are properly
set. You may assume that the call is valid, in particular, p is non-null and p’s left-child link
is standard parent-child pointer, and not a thread. Present your modified pseudocode and
briefly explain why it is correct.

Note 1: Recall that the boolean’s leftIsThread and rightIsThread are used to indicate
that the left/right child link is a thread. These values may also need to be updated.

Note 2: It is possible that the rotation operation cannot be defined because it involves global
knowledge of the tree structure beyond what is accessible through node p. If this is so, please
explain why this is the case.

Problem 4. (7 points) Recall the code (shown below) for the operations skew and split for
AA-trees (from Lecture 7).

AANode skew(AANode p) { | AANode split(AANode p) {

if (p == nil) return p | if (p == nil) return p

if (p.left.level == p.level) { | if (p.right.right.level == p.level) {

AANode q = p.left | AANode q = p.right

p.left = q.right | p.right = q.left

q.right = p | q.left = p

return q | q.level += 1

} | return q

else return p | }

} | else return p

| }

Also recall that each invocation of the insert function, the last line is “return split(skew(p))”.
There is an interesting phenomenon that sometimes occurs. It is illustrated in Fig. 3.

2



9
3

insert(6)

2

4

8
9

Level

2

1
3

2

4

8
96 3

2

4

6
8

skew(8)

3
2

4
split(6)

96

8

Figure 3: Ineffective skew-split combination.

Observe that the invocation of skew(8) results in a right rotation at 8 and returns a reference
to node 6. The subsequent invocation of split(6) results in a left rotation at 8 (thus undoing
the previous rotation). It then promotes 8 to the next higher level. These two rotations
effectively undo each other, and we call this skew-split combination ineffective.

In an effort to improve the efficiency of the AA tree, your task is to write an “effective”
variant of skew-split. Your function, called effectiveSkewSplit(p) must be functionally
equivalent to split(skew(p)). That is, it must have the same effect on the tree’s structure,
and it must return the same result. The only difference is that, it detects when an ineffective
skew-split is about to occur and avoids doing the two rotations.

Present pseudocode for your function and explain why it is correct. As with skew and split,
your function should run in O(1) time.

Problem 5. (12 points) Each node of a 2-3 tree may have either 2 or 3 children, and these nodes
may appear anywhere within the tree. Let’s imagine a much more rigid structure, where the
node types alternate between levels. The root is a 2-node, its two children are both 3-nodes,
their children are again 2-nodes, and so on (see Fig. 4). Generally, depth i of the tree consists
entirely of 2-nodes when i is even and 3-nodes when i is odd. (Remember that the depth of a
node is the number of edges on the path to the root, so the root is at depth 0.) We call this
an alternating 2-3 tree. While such a structure is too rigid to be useful as a practical data
structure, its properties are easy to analyze.

18

6 : 12

93 15

24 : 30

2721 33

4 : 51 : 2 all 3-nodes

0

1

2

Figure 4: Alternating 2-3 tree.

(a) (6 points) For i ≥ 0, define n(i) to be the number of nodes at depth i in an alternating
2-3 tree. Derive a closed-form mathematical formula (exact, not asymptotic) for n(i).
Present your formula and briefly explain how you derived it.

By “closed-form” we mean that your answer should just be an expression involving stan-
dard mathematical operations. It is not allowed to involve summations or recurrences,

3



but it is allowed to include cases, however, such as

n(i) =

{
. . . if i is even
. . . if i is odd.

(b) (6 points) For i ≥ 0, define k(i) to be the number of keys stored in the nodes at depth i
in an alternating 2-3 tree. (Recall that each 2-node stores one key and each 3-node stores
2 key). Derive a closed-form mathematical formula for k(i). Present your formula and
briefly explain how you derived it. (The same rules apply for “closed form”, and further
your formula should stand on its own and not make reference to n(i) from part (a).)

Challenge Problem 1: Continuing Problem 5 on the alternating 2-3 tree, for i ≥ 0, define N(i)
to be the total number of nodes in all depths from 0 through i, and define K(i) to be the total
number of keys in all depths from 0 through i. Derive a closed-form mathematical formula
for N(i) or K(i) (your choice). Present your formula and briefly explain how you derived it.
As before, your formula should stand on its own and not make reference to n(i) or k(i).)

Challenge Problem 2: This problem is actually quite simple, but the “challenge” is to familiarize
yourself with the section of the Latex lecture notes, Lecture X01, that discusses the amortized
analysis of quake heaps.) In this problem we are going to do a walk-through of the amortized
analysis of Quake Heaps for a single example of extract-min shown in Fig. 5.

(f)

9

nodeCt[2] = 4 > 3
4 · nodeCt[1] = 3.75!!

quake()

14204 5

54

4

4

4 659 20 7 16 14

7

7

7

(a)

8

118

7

14

u(b) x = 4

1420 5

5

659 20 7 16 14

7

7

7

8

118

7

14

4

4

4

4

4

(c)

1420 5

5

659 20 7 16 14

7

7

7

8

7

14

8 11

delete-left-path(u)

(d)

1420

5

659 20 7 16 14

7

7

7

8

7

14

(Redrawn)

118

(e)

5

1420

5

659 20 7 16 14

7

7

7

8

7

14

118

5

merge-trees()

5

8

65

5 8

118

20

20 7 16

7

14

14

0

1

2

3

4

Figure 5: Quake Heap amortized analysis.

4



Recall that the potential for the data structure is defined to be Ψ = N + 2R + 4B, where N
is the total number of nodes (both internal nodes and roots), R is the number of root nodes,
and B is the number of nodes that have exactly one child (so called “bad nodes”).

(a) Consider the initial quake heap shown in Fig. 5(a). For this tree, what are the values of
N , R, B, and the potential Ψ?

(b) First, the algorithm searches all the roots to find the smallest key. Let Tb denote the
actual cost, namely number of roots roots visited. What is Tb? Has the potential changed
at all?

(c) Second, we delete all the nodes along the left path leading to the minimum root 4 (see
Fig. 5(b)-(c)). Let Tc denote the actual number of nodes deleted. What is the value of
Tc, and what is the net change to N , R, and B as a result? (Note that we have created
some new roots in the process. If the number decreases, then the net change is negative.)
Let ∆Ψc denote the net change to the potential. What is ∆Ψc and what is the total
contribution Tc + ∆Ψc to the amortized cost?

(d) Next, we perform merge-trees (see Fig. 5(e)). Let Td denote the actual cost of the number
of new nodes created by the merging process. What is the value of Td, and what is the
net change to N , R, and B as a result? Let ∆Ψd denote the net change to the potential.
What is ∆Ψd and what is the total contribution Td + ∆Ψd to the amortized cost?

(e) Finally, we perform the quake operations (see Fig. 5(f)). Let Te denote the actual cost
of the number of new nodes deleted by the quake operations. What is the value of Te,
and what is the net change to N , R, and B as a result? Let ∆Ψe denote the net change
to the potential. What is ∆Ψe and what is the total contribution Te + ∆Ψe to the
amortized cost?

(f) In summary, what is the total actual costs from this operation T = Tb + · · · + Te, what
is the total change in potential ∆Ψ = ∆Ψc + · · ·∆Ψe, and what is the final amortized
cost T + ∆Ψ? (Note that total amortized cost may be negative, since we have improved
the structure more than the actual amount of work needed to perform the operations.)

5


