
CMSC 420: Spring 2022

Practice Problems for Midterm 1

The exam will be held in class on Tue, Mar 8. It is close-book, closed-notes, but you will be
allowed one sheet of notes, front and back.

Problem 0. Expect at least one question of the form “apply operation X to data structure Y ,”
where X is a data structure that has been presented in lecture. (Likely targets: AVL trees,
2-3 trees, AA trees, treaps, skiplists). Here is an example from last semester.

(a) Consider the 2-3 tree shown the figure below. Show the final tree that results after the
operation insert(6). When rebalancing, use only splits, no adoptions (key rotations).

2

1 3 5 : 7 9 14

8 : 12

4

15

30

23 272017 25

21 : 26

32 : 36

2418

Figure 1: 2-3 tree insertion and deletion.

(b) Returning to the original tree, show the final tree that results after the operation
delete(20) When rebalancing, you may use both merge and adoption (key rotation). If
either operation can be applied, give priority to adoptions.

In both cases, you should use the algorithm presented in class. (You will receive partial credit
if you produce a valid 2-3 tree, but not using the algorithm from class.)

Hint: Don’t waste too much time showing intermediate results. You can return to this if
you have spare time.

Problem 1. Short answer questions. Except where noted, explanations are not required, but may
be given to help with partial credit.

(a) A binary tree is full if every node either has 0 or 2 children. Given a full binary tree
with n total nodes, what is the maximum number of leaf nodes? What is the minimum
number? Give your answer as a function of n (no explanation needed).

(b) True or false? Let T be extended binary search tree (that is, one having internal and
external nodes). In an inorder traversal, internal and external nodes are encountered in
alternating order. (If true, provide a brief explanation. If false, show a counterexample.)

1

(c) True or false? In every extended binary tree having n external nodes, there exists an
external node of depth ≤ dlg ne. Explain briefly. Hint: Read this carefully before
answering.

(d) You have a binary tree with inorder threads (for both inorder predecessor and inorder
successor). Let u and v be two arbitrary nodes in this tree. True or false: There is a
path from u to v, using some combination of child links and threads. (No justification
needed.)

(e) What are the minimum and maximum number of levels in a 2-3 tree with n nodes.
(Define the number of levels to be the height of the tree plus one.) Hint: It may help to
recall the formula for the geometric series:

∑m−1
i=0 ci = (cm − 1)/(c− 1).

(f) You are given a 2-3 tree of height h, which has been converted into an AA-tree. As
a function of h, what is the minimum number of red nodes that might appear on any
path from a root to a leaf node in the AA tree? What is the maximum number? Briefly
explain.

(g) Unbalanced search trees, treaps and skiplists all support dictionary operations in O(log n)
“expected time.” What difference is there (if any) in the meaning of “expected time” in
these contexts?

(h) You have a valid AVL tree with n nodes. You insert two keys, one smaller than all
the keys in the tree and the other larger than all the keys in the tree, but you do no
rebalancing after these insertions. True or False: The resulting tree is a valid AVL
tree. (Briefly explain.)

(i) By mistake, two keys in your treap happen to have the same priority. Which of the
following is a possible consequence of this mistake? (Select one)

(i) The find algorithm may abort, due to dereferencing a null pointer.

(ii) The find algorithm will not abort, but it may return the wrong result.

(iii) The find algorithm will return the correct result if it terminates, but it might go
into an infinite loop.

(iv) The find algorithm will terminate and return the correct result, but it may take
longer than O(log n) time (in expectation over all random choices).

(v) There will be no negative consequences. The find algorithm will terminate, return
the correct result, and run in O(log n) time (in expectation over all random choices).

(j) You are given a sorted set of n keys x1 < x2 < · · · < xn (for some large number n).
You insert them all into an AA tree in some arbitrary order. No matter what insertion
order to choose, one of these keys cannot possibly be a red node. Which is it? (Briefly
explain)

(k) You are given a skip list storing n items. What is the expected number of nodes that are
at level 3 and higher in the skip list? (Express your answer as a function of n. Assume
that level 0 is the lowest level, containing all n items. Also assume that the coin is fair,
return heads half the time and tails half the time.)

Problem 2. You are given a degenerate binary search tree with n nodes in a left chain as shown
on the left of Fig. 2, where n = 2k − 1 for some k ≥ 1.

2

(a) Derive an algorithm that, using only single left- and right-rotations, converts this tree
into a perfectly balanced complete binary tree (right side of Fig. 2).

a

c
d

e

f

g

b

d

a

b

c e g

f

Figure 2: Rotating into balanced form.

(b) As an asymptotic function of n, how many rotations are needed to achieve this? O(log n)?
O(n)? O(n log n)? O(n2)? Briefly justify your answer.

Problem 3. You are given a binary search tree where, in addition to the usual fields p.key,
p.left, and p.right, each node p has a parent link, p.parent. This points to p’s parent,
and is null if p is the root. Given such a tree, present pseudo-code for a function

Node preorderPred(Node p)

which is given a non-null reference p to a node of the tree and returns a pointer to p’s preorder
predecessor in the tree (or null if p has no preorder predecessor). Your function should run
in time proportional to the height of the tree. Briefly explain how your function works.

Problem 4. Recall that in a binary tree the depth of a node is defined to be the number of edges
from the root to the node. The height of a node is defined to be the height of the subtree
rooted at this node, that is, the maximum number of edges on any path from this node to
one of its leaves.

In this problem, we will consider some questions involving nodes of a particular depth and
height in an AVL tree. Let us assume (as in class) that an AVLNode stores its key, value,
left, right, and height, and let us assume that the AVLTree stores a pointer to the root

node.

11

13
1

0
1

5

9

15

63

4

4

32

1 20

00

16

2218

19

1 0

00

21

height
depth

0

1

2

3

4

listAtDepth(2) = 〈3, 6, 13, 21〉

listAtHeight(1) = 〈3, 13, 18〉

Figure 3: AVL tree heights and depths.

3

(a) Present an algorithm listAtHeight(int h), which is given an integer h ≥ 0, and
returns a list (e.g., a Java ArrayList) containing all the keys, in increasing order, asso-
ciated with all the nodes that are at height h in the AVL tree. If there are no nodes at
height h, the function returns an empty list.

For example, in Fig. 3, the call listAtHeight(1) would return the list 〈3, 13, 18〉.
Briefly explain how your algorithm works, present a description (pseudocode preferred
or a clear English explanation), and briefly explain its running time. The running time
should be proportional to the number of nodes at height ≥ h. (For example, in the case
of listAtHeight(1), there are 7 nodes of equal or greater height.)

(b) Present an algorithm listAtDepth(int d), which is given an integer d ≥ 0, and returns
a list (e.g., a Java ArrayList) containing all the keys, in increasing order, associated
with all the nodes that are at depth d in the AVL tree. If there are no nodes at depth d,
the function returns an empty list. Note: Nodes do not store their depths, only their
heights.

For example, in Fig. 3, the call listAtDepth(2) would return the list 〈3, 6, 13, 21〉.
In each of the coding problems, briefly explain how your algorithm works, present a
description (pseudocode preferred or a clear English explanation), and briefly explain its
running time. The running time of your algorithm should be proportional to the number
of nodes at depths ≤ d. (For example, in the case of listAtDepth(2), there are 7 nodes
of equal or lesser depth.)

(c) Prove that in any AVL tree, the maximum number of nodes that there are can be at
depth d ≥ 0 is 2d. (Hint: This is intended to be easy. Even so, please give a short
proof, even you think the observation is “obvious”.)

(d) Given any AVL tree T and depth d ≥ 0, we say that T is full at depth d if it has 2d

nodes at depth d. (For example, the tree of Fig. 3 is full at depths 0, 1, and 2, but it is
not full at depths 3 and 4.) Prove that for any h ≥ 0, an AVL tree of height h is full at
all depths from 0 up to bh/2c. (For example, the AVL tree of Fig. 3 has height 4, and
is full at levels 0, 1, and 2.)

Problem 5. Consider the following possible node structure for 2-3 trees, where in addition to the
keys and children, we add a link to the parent node. The root’s parent link is null.

class Node23 { // a node in a 2-3 tree

int nChildren // number of children (2 or 3)

Node23 child[3] // our children (2 or 3)

Key key[2] // our keys (1 or 2)

Node23 parent // our parent

}

Assuming this structure, answer each of the following questions:

(a) Present pseudocode for a function Node23 rightSibling(Node23 p), which returns a
reference to the sibling to the immediate right of node p, if it exists. If p is the rightmost
child of its parent, or if p is the root, this function returns null. (For example, in Fig. 4,
the right sibling of the node containing “2” is the node containing “8:12”. Since the
node containing “8:12” is the rightmost node of its parent (“4”), it has no right sibling.)

4

2

1 3 5 : 7 9 14

8 : 12

4

15

30

23 272017

24

19 : 21

32 : 36

2levelSuccessor() = 8 : 12

levelSuccessor() =8 : 12 19 : 21

rightSibling() = null8 : 12

2rightSibling() = 8 : 12

Figure 4: Sibling and level successor in a 2-3 tree.

Your function should run in O(1) time.

(b) For a node p in a 2-3 tree, its level successor is the node to its immediate right at the
same level. Give pseudocode for a function Node23 levelSuccessor(Node23 p), which
returns a reference to p’s level successor, if it exists. If p is the rightmost node on its
level (including the case where p is the root), this function returns null. (For example,
in Fig. 4, the level successor of the node containing “2” is the node containing “8:12”,
and the level successor of “8:12” is the node containing “19:21”.)

Your function should run in O(log n) time. If you like, you may use rightSibling.

(c) Suppose we start at any node p in a 2-3 tree with n nodes, and we repeatedly perform
p = levelSuccessor(p) until p == null. What is the (worst-case) total time needed
to perform all these operations? (Briefly justify your answer.)

Problem 6. A social-distanced bit vector (SDBV) is an abstract data type that stores bits, but
no two 1-bits are allowed to be consecutive. It supports the following operations (see Fig. 5):

� init(m): Creates an empty bit vector B[0..m-1], with all entries initialized to zero.

� boolean set(i): For 0 ≤ i ≤ m (where m is the current size of B), this checks whether
the bit at positions i and its two neighboring indices, i− 1 and i + 1, are all zero. If so,
it sets the ith bit to 1 and returns true. Otherwise, it does nothing and returns false.
(The first entry, B[0], can be set, provided both it and B[1] are zero. The same is true
symmetrically for the last entry, B[m-1].)

For example, the operation set(9) in Fig. 5 is successful and sets B[9] = 1. In contrast,
set(8) fails because the adjacent entry B[7] is nonzero.

There is one additional feature of the SDBV, its ability to expand. If we ever come to a
situation where it is impossible set any more bits (because every entry of the bit vector is
either nonzero or it is adjacent to an entry that is nonzero), we reallocate the bit vector to
one of three times the current size. In particular, we replace the current array of size m with
an array of size 3m, and we copy all the bits into this new array, compressing them as much
as possible. In particular, if k bits of the original vector were nonzero, we set the entries
{0, 2, 4, . . . , 2k} to 1, and all others to 0 (see Fig. 5).

The cost of the operation set is 1, unless a reallocation takes place. If so, the cost is m,
where m is the size of the bit vector before reallocation.

5

10 0 0 0 1 0 1 0 0 0 0 0 1
0 1 2 3 . . . 13

m = 14

B

10 0 0 0 1 0 1 0 1 0 0 0 1
0 1 2 3 . . . 139

set(9)

10 0 0 0 1 0 1 0 0 0 0 0 1
0 1 2 3 . . . 138

set(8)
false!

10 0 1 0 1 0
0 1 2 3 . . .

B
7

m = 8

0 1 0 1 0
0 1 2 3

B
3m = 24

23

k = 3
reallocate 1 0 0 0 0 0 0 0 0. . .

4 5

cost = 1

cost = 1

cost = m = 8

8 9

Figure 5: Social-distanced bit vector. (Shaded entries cannot be set to one, due to social-distancing.)

Our objective is to derive an amortized analysis of this data structure.

(a) Suppose that we have arrived at a state where we need to reallocate an array of size m.
As a function of m, what is the minimum and maximum number of bits of the SDBV
that are set to 1? (Briefly explain.)

(b) Following the reallocation, what is the minimum number of operations that may be
performed on the data structure until the next reallocation event occurs? Express your
answer as a function of m. (Briefly explain.)

(c) As a function of m, what is the cost of this next reallocation event? (Briefly explain.)

(d) Derive the amortized cost of the SDBV. (For full credit, we would like a tight constant,
as we did in the homework assignment. We will give partial credit for an asymptotically
correct answer. Assume the limiting case, as the number of operations is very large and
the initial size of the bit vector is small.)

Throughout, if divisions are involved, don’t worry about floors and ceilings.

6

