
CMSC 420: Spring 2022

Programming Assignment 1A: Quake Heaps (Insertion and Merging)

Handed out: Thu, Feb 10. Due: Thu, Feb 24, 11:59pm.

Overview: This is the first in a two-part assignment to implement an interesting data structure
called a Quake Heap. As with standard heaps, this data structure implements a priority
queue. Such a data structure stores key-value pairs, where keys are from a totally ordered
domain (such as integers, floats, or strings). At a minimum, a priority queue supports the
operations of insert (add a new key-value pair) and extract-min (remove the entry with the
smallest key, and return its associated value).

The most famous example of a heap is the binary heap, which is the data structure used
by HeapSort. There are numerous variants, which provide improved performance for various
operations, notably that of decreasing a key. The quake heap is such a variant. It was
developed by Timothy Chan (described in this paper) as a simpler alternative to the Fibonacci
Heap. It supports insertion and decreasing keys in O(1) time, and it supports extract-min in
O(log n) amortized time. (More details can be found on the CMSC420 Projects page.)

In Part-A of the assignment, we will implement only a portion of the quake heap functionality.
We will discuss the quake heap in a future lecture, but this part of the assignment is completely
self-contained. In Part-B, we will implement all the functionality.

Quake Heap: The Java class is called QuakeHeap. It is generic, templated by two types Key

and Value. The Key type implements the Java Comparable interface, meaning that it must
provide a function compareTo() for comparing keys. We also assume that both types support
a (stable) toString() method.

The quake heap is represented as a collection of binary trees, where each node stores a key-
value pair. The nodes of these trees are organized into levels. All the leaves reside on level 0,
and each key in the heap is stored in exactly one leaf of some tree. (For example, in Fig. 1,
the keys consist of the 13 keys in the blue leaf nodes.)

1632041

1 4 3

1 3

1

5 10

3

2

4

1

0

nodeCt

1 6 4 9 20 3 14 1610 115 821

roots

10

2

4

1

7

13

Figure 1: A quake heap storing 13 keys {21, 5, 8, 10, . . . , 16} (values are not shown).

Each internal node has a left child and an optional right child. Its key value is that of its left
child. If the right child exists, its key value is greater than or equal to the left child. The
root holds the smallest key value over all the leaves, which (by our rule that the left key is

1

http://tmc.web.engr.illinois.edu/heap_ianfest.pdf
http://www.cs.umd.edu/class/spring2022/cmsc420-0101/project.html

smaller) is that of the leftmost leaf. It follows that the smallest key in the heap will be stored
in one of the roots (but we don’t generally know which).

Each node stores a key-value pair, left and right child pointers, parent pointer, and its level.
We maintain two additional arrays organized by level:

� roots[lev]: A linked list containing references to the tree roots of level lev. (We
recommend implementing this as a Java LinkedList of nodes).

� nodeCt[lev]: Stores the total number of nodes at level lev.

Nodes and Locators: The principal objects being manipulated are the nodes in the quake heap.
As mentioned above, each node stores a key-value pair, left and right child links, parent link,
and its level in the tree. Nodes at level 0 are leaves, so both child links are null. A root
node (at any level) has a parent link of null. Java provides an elegant way to define nodes
by simply nesting a class, say Node, inside your QuakeHeap class (see the code block below).

One tricky element in any heap structure that supports decrease-key is that we need a mech-
anism for identifying the entry whose key we wish to decrease. When we insert a key-value
pair, we create a new leaf node. Since Node is a protected object within QuakeHeap, we cannot
return a pointer directly to it. Instead, we create a special public object, called a Locator,
to enclose a reference to this newly inserted leaf node. The insert function returns a locator
referencing the newly created node. A skeletal example is provided below.

package cmsc420_s22;

public class QuakeHeap<Key extends Comparable<Key>, Value> {

class Node { // a node in the heap

Key key;

Value value;

// ... whatever else you need in your node

}

public class Locator { // locates a node

private Node u; // the node

private Locator(Node u) { this.u = u; } // constructor

private Node get() { return u; } // getter

}

public Locator insert(Key x, Value v) { // insert (x,v)

// ... your code to create a new leaf node u

return new Locator(u);

}

// ... other QuakeHeap members

}

Operations: For this part of the project, we will begin by implementing the basic functions needed
to insert keys and to build subtrees. Here is a list of the operations you are to implement.
(Further details available on the CMSC420 Projects page.)

2

http://www.cs.umd.edu/class/spring2022/cmsc420-0101/project.html

QuakeHeap(int nLevels): This constructs an empty quake heap. The parameter nLevels indi-
cates the number of levels to allocate in your arrays roots and nodeCt.1 This allocates and
initializes the roots and nodeCt arrays and any other private data that your class uses.

void clear(): This resets the structure to its initial state. In particular, it resets all the node
counts to zero and clears all the roots lists.2

Locator insert(Key x, Value v): This inserts the key-value pair (x, v) in the heap. This cre-
ates a “trivial” tree consisting of a single root node at level 0, that stores this key-value pair.
It inserts this node into the list roots[0]. It returns a Locator (see above) referencing the
newly created leaf node.

int getMaxLevel(Locator r): Given a locator r, this determines the maximum height of an
ancestor reachable by following the reversal of left-child links up the tree. (If the keys are
unique, this is the highest node in the tree that has the same key as r). For example, for the
heap in Fig. 1, the max-level of leaf labeled 21 is 0, the max-level of 4 is 2, the max-level of
1 is 4, and the max-level of 16 is 1.

Key getMinKey(): This returns the smallest key in the heap and also reorganizes the heap, merging
many small trees into one large tree.

� If the heap is empty, throw an Exception with the message "Empty heap".

� Otherwise, find the minimum key in the heap by enumerating all the nodes in all the
roots lists, we find the one with the smallest key. (Ties may be broken arbitrarily.)

� Next, consolidate trees by the following process, called merge-trees. Enumerate the
levels bottom-up, from zero up to the second highest level (that is, nLevels-2). At each
level k:

– Sort the nodes of roots[k] in increasing order by their keys.3 Ties may be broken
arbitrarily.

– Next, merge trees in pairs as follows. While roots[k] has at least two roots:

* Extract the first two root nodes from the sorted list. Call them u and v. Since
the list is sorted, we know that u.key ≤ v.key.

* Create a new root node w, with u as its left child and v as its right child. (Don’t
forget to set u and v’s parent links to point to w.) By our convention, w’s key is
set to u.key. (We don’t care about w’s value field. You can just set it to null.)

* Add w to roots[k+1].

Observe that when the merge-tree process is finished, every level, except possibly the top one,
has at most one root. This is illustrated in Fig. 2.

1From a software design perspective, it would be better if the constructor did not have this parameter, and the
array just grows dynamically as needed. Limiting the array size will be useful for testing purposes.

2You might realize that there is a potential memory leak here since locators may have been generated that refer
to entries that have been removed. Fixing this is not trivial, but we won’t worry about it.

3If you store your roots[k] as a Java LinkedList, you can invoke Collections.sort() to sort them.

3

3

rootsnodeCt

0

75

3

rootsnodeCt

0

7 5

merge

3

roots

1

0

7

merge3

7

2

92

rootsnodeCt

1

5

0

53

done

sort roots 2

92

2

923 5

32

92

0 0

0

5

55

1

22

3

rootsnodeCt

0

7 5

3 2

92

0

5

2

sort roots

3

rootsnodeCt

0

75

3

rootsnodeCt

0

7 5

merge

3

rootsnodeCt

1

0

7

merge2

7

2

92

rootsnodeCt

1

5

0

53

done

sort roots 2

92

2

923 5

32

92

0 0

0

5

55

1

22

3

rootsnodeCt

0

7 5

3 2

92

0

5

2

sort roots

(a) (b) (c)

(d)(e)

Figure 2: Merging trees. Working bottom-up, we sort the roots at each level, and then merge
consecutive pairs until either zero or one root remains.

ArrayList<String> listHeap(): This operation lists the contents of your structure in the form
of an array-list of strings. The precise format is important, since we check for correctness by
“diff-ing” your strings against ours.

Enumerate the levels of the tree from bottom up. For each level, do the following:

� If the the node count for this level is zero, skip this level and go on to the next. Otherwise,
sort the root nodes of this level by their key values, just as in getMinKey().

� Generate a level header in the form of a string “{lev: xxx nodeCt: yyy}” and add
it to the array-list. Here, “xxx” is the level index and “yyy” is the node count for
this level. For example, if there are four nodes on level two, this generates the string,
“{lev: 2 nodeCt: 4}”.

� For each root node r in the roots list for this level, enumerate the the nodes of this
tree based on a preorder traversal. For each node u visited in this traversal, we do the
following:

Internal: (u.level ≥ 1) Generate the string "(" + u.key + ")". Recursively visit
u.left and u.right.

Leaf: (u.level = 0) Generate the string "[" + u.key + " " + u.value + "]" (where
“ ” denotes a single space) and return.

Null: (u = null) This cannot happen in Part-A, but it can in Part-B. If so, generate
the string "[null]" and return.

As an example, invoking listHeap on the structure appearing in to Fig. 2(e) would result in
the 11-element array-list shown below. (For simplicity, we set the value of key x to be the
string “X0x”.)

4

Index Array-List Contents

0: {lev: 0 nodeCt: 5}

1: [7 X07]

2: {lev: 1 nodeCt: 2}

3: {lev: 2 nodeCt: 1}

4: (2)

5: (2)

6: [2 X02]

7: [9 X09]

8: (3)

9: [3 X03]

10: [5 X05]

Unfortunately, it is not easy to interpret the tree structure from this preorder listing, but
we have provided a function in CommandHandler.java that reformats the tree so it is easier
to read. For example, given the above array-list, our function would generate the following
output for you. (Contrast this with the tree of Fig. 2(e).)

Structured list:

{lev: 0 nodeCt: 5}

Tree: 0

[7 X07]

{lev: 1 nodeCt: 2}

{lev: 2 nodeCt: 1}

Tree: 0

| | [2 X02]

| (2)

| | [9 X09]

(2)

| | [3 X03]

| (3)

| | [5 X05]

Skeleton Code: As in the earlier assignment, we will provide skeleton code on the class
Projects Page. The only file that you should need to modify is QuakeHeap.java. Re-
member that you must use the package “cmsc420 s22” in all your source files in order
for the autgrader to work. As before, we will provide the programs Tester.java and
CommandHandler.java to process input and output. You need only implement the data
structure and the functions listed above. Below is a short summary of the contents of
QuakeHeap.java.

package cmsc420_s22; // don’t change this!

import java.util.ArrayList;

public class QuakeHeap<Key extends Comparable<Key>, Value> {

class Node { ... }

public class Locator { ... }

5

http://www.cs.umd.edu/class/spring2022/cmsc420-0101/project.html

public QuakeHeap(int nLevels) { ... }

public void clear() { ... }

public Locator insert(Key x, Value v) { ... }

public Key getMinKey() throws Exception { ... }

public int getMaxLevel(Locator r) { ... }

public ArrayList<String> listHeap() { ... }

}

Efficiency requirements: The function insert() should run in O(1) time, the function
getMinKey() should run in time proportional to the number of roots (plus the time
needed for sorting each level), and the function getMaxLevel() should run in time
proportional to the maximum number of levels. A portion of your grade will depend on
the efficiency of your program.

Testing/Grading: Submissions will be made through Gradescope (you need only upload
your modified QuakeHeap.java file). We will be using Gradescope’s autograder and
JUnit for testing and grading your submissions. We will provide some testing data and
expected results along with the skeleton code.

The total point value is 30 points. Of these, 25 points will be purely for input/output
correctness as tested by the autograder, and the remaining 5 points will be for clean
programming style and the above efficiency requirements.

6

