
CMSC 420: Spring 2022

Programming Assignment 2: Height-Balanced kd-Trees

Handed out: Tue, Apr 19. Due: Tue, Apr 26, 11:59pm. (Submission via Gradescope.)

Overview: In this assignment you will implement a variant of the kd-tree data structure, called a
height-balanced kd-tree (or HBkdTree) to store a set of points in 2-dimensional space. It will
support insertion, deletion, and a few other queries.

This data structure borrows ideas from AVL trees, scapegoat trees, and classical point kd-
trees. When constructed, a positive integer parameter maxHeightDifference is given. When-
ever an internal node’s two subtrees have heights that differ by more than this value, the sub-
tree rooted at this node is rebuilt1 into a perfectly balanced tree (in the manner of scapegoat
trees).

The data structure is generic and is templated with the point type, which call a labeled
point. This encapsulates the concept of a 2-dimensional point that is associated with a string,
called its label. This may be any class that implements the Java interface (which we will
provide) called LabeledPoint2D. Such an object is a 2-dimensional point, represented by its
(x, y)-coordinates and an associated string label.

public interface LabeledPoint2D {

public float getX(); // get point’s x-coordinate

public float getY(); // get point’s y-coordinate

public float get(int i); // get point’s i-th coordinate (0=x, 1=y)

public Point2D getPoint2D(); // get the point itself

public String getLabel(); // get the label

}

The Point2D object is an enhanced version of the Java built-in Point2D object, which we
will provide to you.

In our case, the labeled points represent airports, where the (x, y) coordinates are the airports
location (think latitude and longitude) and the labels are the 3-letter airport codes (e.g., “BWI”
for Baltimore-Washington Airport). The individual coordinates (which are doubles) can be
extracted directly using the functions getX() and getY(), or get(i), where i = 0 for x and
i = 1 for y.

Your wrapped kd-tree will be templated with one type, which we will call LPoint (for “labeled
point”). For example, your file HBkdTree will contain the following public class:

public class HBkdTree<LPoint extends LabeledPoint2D> { ... }

Height-Balanced kd-Tree: Recall that a point kd-tree is a data structure based on a hierarchical
decomposition of space through the use of axis-orthogonal splits. A height-balanced kd-tree
imposes the additional requirement that for every internal node, the heights of its two subtrees

1You might wonder why we don’t just apply rotations as we did with AVL trees. The issue is that rotations are
a one-dimensional operation and they do not make sense in the context of multidimensional structures like kd-trees.

1



can differ by at most a user-specified integer parameter maxHeightDifference, which is at
least 1. The insertion and deletion processes are exactly the same as given in the lecture on
kd-trees (see the latex lecture notes for Lecture 13, which has all the details spelled out),
but when inserting a new point, the cutting dimension is selected based on the shape of the
current cell. We select the cutting dimension so that we split the longer side of the current
cell. More formally, if its width (along x) is greater than or equal to its height (along y) the
cutting dimension is 0 (x or vertical) and otherwise it is 1 (y or horizontal). Note that ties
are broken in favor of vertical cuts.

For example, consider the insertion of ATL in Fig. 1. When we fall out of the tree (along
the left child link from ORD), the cell associated with this null pointer is the rectangle whose
lower-left corner is (0, 4) and whose upper-right corner is (2, 8).) Since this rectangle is taller
than wide, we cut horizontally, thus setting the cutting dimension of the new node to 1.

After a point has been inserted into or deleted from the tree, we walk backwards upward
along the search path (exactly has we would do if this were an AVL), updating the heights
as we go. Whenever we reach a node p where the heights of its two subtrees differ by more
than maxHeightDifference, we completely rebuild the subtree rooted at p. We first traverse
the subtree rooted at p and store all the labeled points of this subtree in a list (e.g., a Java
ArrayList). Given this list, the subtree is rebuilt by the following recursive process (see
Fig. 1):

Basis: If the list is empty, return null. Otherwise, continue with the following steps.

Cutting Dimension: Let cell denote the cell associated with the current node. As with
insertion, we select the cutting dimension so that it splits the longer side of cell.

Sort: Sort the points according to the cutting dimension. If the cutting dimension is x, sort
the points in increasing order first by x and break ties by sorting in increasing order y.
If the cutting dimension is y, then sort first by y with ties broken by x.

Split and Recurse: Letting k denote the size of the list (and assuming as usual that entries
are indexed from 0 to k−1), define the median element to be point at index m← bk/2c.
Recursively build a balanced tree on the left-side sublist of entries with indices 0 through
m−1, and recursively build a balanced tree on the right-side sublist of entries with indices
m + 1 through k − 1. Join these two subtrees under a node whose point is the median
point, and whose cutting dimension is as chosen above. Return this tree.

Unlike scapegoat trees (where each operation can trigger at most one rebuild), we continue
all the way up to the root, updating the heights as we go and checking the height difference
condition. This may trigger further rebuilds. (See Fig. 1 for an example.)

Requirements: Your program will implement the following functions for the HBkdTree. While
you can implement the data structure internally however you like (subject to the style and
efficiency requirements given below), the following function signatures should not be altered.
As part of the skeleton code, we will provide you with the LabeledPoint2D interface, and
two useful classes, Point2D and Rectangle2D. (If you wish to modify these objects, do not
alter them. Instead, create your own copy, say MyPoint2D, and make modifications there.)

HBkdTree(int maxHeightDifference, Rectangle2D bbox): This constructs a new HBkdTree

with the given max height difference and the given axis aligned bounding box.

2



0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

DCA

JFK

DFW

IAD

LAX

SEA

DCA
(6,7)

3

1

002

01

0

SEA
(5,5)

JFK
(9,3)

BWI
(8,8)

SFO

ORD

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

DCA

JFK

DFW

IAD

ORD
(2,6)

DFW
(3,8)

ATL

LAX
ATL
(1,5)

SEA

DCA
(6,7)

3

1

00

2

1

000

1

SEA
(5,5)

JFK
(9,3)

BWI
(8,8)

ORD

SFO

DFW
(3,8)

ATL

ORD
(2,6)

ATL
(1,5)

!!

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

DCA

JFK

DFW

IAD

LAX

SEA

DCA
(6,7)

3

1

00

2

1

00

0

SEA
(5,5)

JFK
(9,3)

BWI
(8,8)

ORD

SFO

DFW
(3,8)

LAX
(4,2)

IAD
(3,4)

ORD
(2,6)

BWI

BWI

BWI

insert("ATL") at (1,5)

rebuild("IAD")

IAD
(3,4)

SFO
(1,9)

SFO
(1,9)

LAX
(4,2)

LAX
(4,2)

IAD
(3,4)

SFO
(1,9)

0

Figure 1: Let maxHeightDifference = 1. Suppose we insert ATL at (1, 5). This is inserted as
the left child of ORD. On returning from the recursive calls, we update the node heights at ORD,
DFW, and IAD. At IAD,the absolute height difference in our left and right subtrees is 2 − 0 = 2,
which exceeds maxHeightDifference. We rebuild this entire subtree highlighted in blue. Since
the cell (shaded in blue) is taller than wide, we cut horizontally. We sort along y (yielding
〈LAX, IAD, ATL, ORD, DFW, SFO〉) and split about the median ORD. We recursively build the other sub-
trees similarly. We continue back up the root, updating heights, but no further rebuilds are needed.

3



LPoint find(Point2D pt): Given an (unlabeled) point, determine whether it exists within
the tree, and if so return the associated labeled point. Otherwise, return null.

void insert(LPoint pt): Inserts point given labeled point in the tree (and performs re-
building if necessary, as described above). If the point lies outside the bounding box,
throw an Exception with the error message "Attempt to insert a point outside

bounding box". If a point with the same coordinates (and possibly different label) exists
in the tree, throw an Exception with the message "Attempt to insert a duplicate

point". Otherwise, apply the insertion and rebuilding process described above.

void delete(Point2D pt) throws Exception: Given an (unlabeled) point, this deletes
the point of the tree having the same coordinates (and performs rebuilding if neces-
sary, as described above). If there is no such point, it throws an Exception with the
error message "Attempt to delete a nonexistent point". The deletion process is
the same as described in the Lecture 13 notes. (In particular, the process by which the
replacement nodes are selected is the same as given in the lecture notes.)

Update (4/20): In the utility function findMin, which is used to find the replacement
node, if there are ties for the point with the smallest ith coordinate, break the ties by
taking the point with the smallest other coordinate (that is, coordinate 1− i).

Update (4/20): The one change is that on returning up along the search path node
heights are to be updated, and whenever a node is found to fail the height difference
criteria, its subtree is rebuilt. Generally, a deletion may result in multiple replacements.
The balance condition testing and rebuilding is applied only after the standard deletion
process is completely finished. Balance checking commences at the final leaf node whose
deletion terminates the standard kd-tree deletion process. This is very easy to code.
Simply code the deletion as given in the lecture notes, but just prior to returning from
the deletion helper (that is, just prior to the line “return p” from the lecture notes),
update the current node’s height, check the height difference, and trigger rebuilding if
needed. If the tree is rebuilt, return a pointer to the newly rebuilt tree.

Update (4/20): Note, by the way that due to replacement, many cells in the tree
can change shape. (In particular, these are the cells that are incident on the splitting
line through the deleting point.) As a result, some cells that were taller have switched
to being wider and vice versa. However, you should not alter the cutting dimension
for any of the nodes. Once the cutting dimension of a node has been set, it should
remain unchanged until the node is deleted or it has been part of a rebuilding. (As a
consequence of this, you should not store each node’s cell as a member of the kd-tree
node, since otherwise updating these cells will take too much time. Instead, you should
compute cells on the fly as you traverse the tree.)

ArrayList<String> getPreorderList(): This operation generates a preorder enumeration
of the nodes in the tree. This is represented as a Java ArrayList of type String, with
one entry per node. You will probably implement this by writing a recursive helper
function that starts at the root. When it visits a node p, it does the following. If p

== null, then generate the string "[]" and return. Otherwise, generate the following
string and recursively invoke the procedure on the left and right children. Depending on
whether the cutting dimension is x or y, this generates either:

"(x=" + cutVal + " ht=" + height + ") " + point.toString()

4



(35, 60)

(20, 45)

(10, 35)

(20, 20) (60, 10)

(50, 30)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

(20, 45)

(35, 60)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(50, 30) (90, 60)

(70, 20)

(60, 10)

delete(35,60)

(20, 45)

(50, 30)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(60, 10) (90, 60)

(70, 20)

(20, 45)

(10, 35)

(20, 20)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

(60, 10)

(50, 30)

5

2

1

4

3

2

0

1

00

2

1

0 1

2

0

!!

0

(20, 45)

(10, 35)

(20, 20)

(60, 80)

(70, 20)
(60, 10)

(50, 30)

(20, 45)

(10, 35)

(20, 20) (60, 10)

(70, 20)

2

1

0

1

00

(60, 80)

(80, 40)

1

2

3
(50, 30)

(90, 60)

(80, 40)

(90, 60)

rebuild(p)

p

Standard kd-tree deletion

(see Lecture 13 notes)

Figure 2: Let maxHeightDifference = 1. (Note that this tree is not valid, since it fails the
height-difference condition at many nodes. We have chosen it to match the example from Lec-
ture 13.) Suppose we delete the point (35,60). We first perform the standard kd-tree dele-
tion as described in Lecture 13. Note that when the replacement point (50,30) is copied to
the root, the root’s cutting dimension does not change. At the end of the process, on returning
from the recursive calls, we update the node heights at (70,20) (now 0), (60,10) (now 1), and
(80,40) (now 2). At (60,80), the absolute height difference in the left and right subtrees is
2 − (−1) = 3, which exceeds maxHeightDifference. We rebuild this entire subtree highlighted
in blue. Since the cell (shaded in blue) is taller than wide, we cut horizontally. We sort along
y (yielding 〈(60,10), (70,20), (80,40), (90,60), (60,80)〉) and split about the median (80,40).
We recursively build the other subtrees similarly. We continue back up the root, updating heights,
but no further rebuilds are needed.

5



"(y=" + cutVal + " ht=" + height + ") " + point.toString()

where cutVal is the cutting value for this node (that is, the coordinate of the node’s point
associated with the cutting dimension), height is the height of the subtree rooted at
this node, and point.toString() invokes the toString() method for the point stored
in this node. (This function will be provided to you as part of our skeleton code.)

Here is example of what this would look like for the tree at the top of Fig. 1.

(x=5.0 ht=3) SEA: (5.0,5.0)

(y=4.0 ht=2) IAD: (3.0,4.0)

(x=4.0 ht=0) LAX: (4.0,2.0)

[]

[]

(y=8.0 ht=1) DFW: (3.0,8.0)

(x=2.0 ht=0) ORD: (2.0,6.0)

[]

[]

(x=1.0 ht=0) SFO: (1.0,9.0)

[]

[]

(y=7.0 ht=1) DCA: (6.0,7.0)

(y=3.0 ht=0) JFK: (9.0,3.0)

[]

[]

(x=8.0 ht=0) BWI: (8.0,8.0)

[]

[]

Note that our autograder is sensitive to both case and whitespace.

ArrayList<LPoint> orthogRangeReport(Rectangle2D query): This function performs an
orthogonal range reporting query. It is given an axis-aligned rectangle query and it re-
turns a Java ArrayList containing the points lying within this rectangle. (You may find
it useful to use the function from class Rectangle2D, such as contains, leftPart, and
rightPart.) The order in which elements appear in the final list does not matter. We
will sort the list before outputting it.

void clear(): This removes all the entries of the tree.

int size(): Returns the number of points in the tree. For example, for the tree at the top
of Fig. 1, this would return 9.

void setHeightDifference(int newDiff): Update (4/19): You no longer need to im-
plement this operation.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You should
replace the HBkdTree.java file with your own, and you should add the implementation of
the above functions to HBkdTree.java. You should not modify any of the other files, but you
can add new files of your own.

As mentioned above, you should not modify Point2D or Rectangle2D (since our testing
functions use these), but you can create copies and make modifications to these copies if you
like.

6

http://www.cs.umd.edu/class/spring2022/cmsc420-0101/project.html


You must use the package “cmsc420 s22” for all your source files. (This is required for
the autgrader to work.) As usual, we will provide a driver program (Tester.java and
CommandHandler.java) that will input a set of commands. Here is a portion of the class’s
public interface (and of course, you will add all the private data and helper functions). You
should not modify the signature of the public functions, but you are free to set up the internal
structure however you like.

package cmsc420_s22;

import java.util.ArrayList;

public class HBkdTree<LPoint extends LabeledPoint2D> {

public HBkdTree(int maxHeightDifference, Rectangle2D bbox) { /* ... */ }

public LPoint find(Point2D pt) { /* ... */ return null; }

public void insert(LPoint pt) throws Exception { /* ... */ }

public void delete(Point2D pt) throws Exception { /* ... */ }

// ... and so on

}

Efficiency requirements: Update (4/19): Excluding the time for rebuilding, the operations
find, insert, and delete must run in time proportional to the tree height. (Because of
rebalancing, the tree height will be O(log n).) The operation orthogRangeReport should be
efficient in the sense that it does not waste time making recursive calls into subtrees whose
cell does not overlap the query range. For this reason, the helper function for this operation
will need to test the node’s cell against the query range.

The operation size should run in constant time. (This is best handled by maintaining a
separate counter that keeps track of the number of points currrently in the structure.)

Testing/Grading: Update (4/19): We will use the standard Gradescope-based grading process
that we have used in previous assignments.

7


