
CMSC 420: Spring 2022

Programming Assignment 3: Euclidean Minimum Spanning Trees

Handed out: Thu, Apr 28. Due: TBD.

Overview: The principal purpose of this assignment is to combine some of the data structures
we have seen to compute a fundamental geometric structure, called the Euclidean minimum
spanning tree (EMST).

Let us first recall the graph-based minimum spanning tree. Given a connected, undirected
graph G = (V,E) with vertex set V and edge set E, assume that each edge (u, v) ∈ E has an
associated weight w(u, v). A spanning tree is a subset of edges of E so that the subgraph of
G induced by these edges is connected, acyclic, and includes all the vertices of G. The weight
of the spanning tree is the sum of its edge weights. The minimum spanning tree (MST) is the
spanning tree of minimum weight. (If there are multiple spanning trees of the same minimum
weight, any of them is a valid answer to the MST problem.)

We can define the MST problem in a geometric context. We are given a set P = {p1, . . . , pn}
in R2. This set implicitly defines a graph, called the Euclidean graph, whose vertex set is P ,
whose edges consist of all (unordered) pairs (pi, pj), and where the weight of an edge is the
Euclidean distance between these points. Note that |E| =

(
n
2

)
, so G has O(n2) size. The

Euclidean minimum spanning tree (EMST) is the MST of P ’s Euclidean graph (see Fig. 1).

DCA

DFW

IAD

LAX

SEA

ORD

SFO

BWI

ATL

DCA
DFW

IAD

LAX

ORD

SFO

BWI

ATL

EMST(P)

SEA

Point set P

Figure 1: Euclidean minimum spanning tree.

In this assignment, you will implement a class EMSTree, whose principal purpose is to compute
the EMST of a set of points in the plane efficiently. This class with provide functions for
adding points to the set, clearing the set, and computing the EMST of the set. As in our
previous assignment, it is templated with the point type, which as in the previous assignment
will be labeled point:

public class EMSTree<LPoint extends LabeledPoint2D>

The EMST will be computed by a geometric variant of Prim’s MST algorithm. In order
to achieve efficiency, your program will need to implement a kd-tree (e.g., your HBkdTree

1

from Programming Assignment 2) augmented with a function for answering nearest-neighbor
queries and a priority queue (e.g., your QuakeHeap from Programming Assignment 1).

Points and Distances: As in the previous assignment, the points in our assignment will be any
class that implements the LabeledPoint2D interface, such as the Airport class.

The EMST has the same structure whether defined in terms of Euclidean distances or squared
Euclidean distances.1 By avoiding square roots, it will be both more efficient and more
accurate. Letting pi = (xi, yi), the weight of the edge between them will be the squared
Euclidean distance defined as

d(pi, pj) = (xi − xj)
2 + (yi − yj)

2.

To assist you, we have added a member function double distanceSq(Point2D q) to the
class Point2D, which computes the squared distance between the current point and another
point q. For example, the squared distance between points p and q can be computed as
p.distanceSq(q). This function has the feature that if the argument is null, it returns
Double.POSITIVE INFINITY.)

Prim’s Algorithm: Prim’s MST algorithm is given a starting vertex s0, and builds the spanning
tree by repeatedly adding the point that lies outside the tree, but is closest to some point of
the tree. A new point is added with each iteration. Let S denote the set of points that are
currently in the spanning tree (see the shaded region in Fig. 2). Initially S = {s0} and the
algorithm terminates when all the points of P are in S.

DCA
DFW

IAD

LAX

SEA

ORD

SFO BWI

ATL

DCA
DFW

IAD

LAX

SFO BWI

ORD

SEA

New nearest

(ORD,IAD)

S

P \ S

S

(IAD->LAX)

(ATL->LAX)

(ORD->SEA)

ATL

P \ S

neighbors:

Add:

Figure 2: Originally, S = {SFO, DFW, ORD, ATL} with the nearest-neighbor pairs (SFO,BWI),
(DFW,DCA),(ORD,IAD), and (ATL,IAD). The closest of these, (ORD,IAD) is added to the EMST, IAD
is added to S, and new nearest neighbors (ATL,IAD), (ORD,IAD), and (IAD,SEA) are computed.

Each point pi ∈ S computes its nearest point in the complement set P \ S (indicated by red
broken lines in the figure). Let’s call these the nearest neighbor pairs. Let (pi, pj) be the
closest of all the nearest neighbors. In the next iteration, this edge is added to the spanning
tree, pj is added to S, and we need to update the nearest neighbors. This will certainly
include pi, pj , and any it will also include any other points of S whose nearest neighbor was
pj (see Fig. 2). The process is repeated n − 1 times, after which all the points have been
added to the spanning tree.

Implementing this algorithm efficiently will involve a number of data structures.

1This fact is by no means obvious. In fact it holds for any strictly monotone function of distance.

2

List: to store the edges of the spanning tree. This can be implemented using a Java
ArrayList or LinkedList. Since Java has no primitive type for storing a pair, we
will provide you with a simple generic class Pair in the skeleton code. You can create
a new pair (new Pair(a,b)), access its components (getFirst(), getSecond()), and
test equality (pair1.equals(pair2)).

Set: to maintain the points of S. This must support the operations insert and contains

(to test membership). This can be done using a Java HashSet.

Spatial index: to store the points of P \S waiting to be inserted into the EMST. This must
support the operations of insert, delete, and nearestNeighbor. In a nearest-neighbor
query, we are given a query point q, and the answer is the closest point in the tree to q.
This can be done using your HBkdTree from Programming Assignment 2, and adding a
nearest-neighbor function. (See Lecture 14 latex notes for details on how to do this.)

Priority Queue: to store the nearest-neighbor pairs ordered by their distance. Each entry
stores the associated pair of points (e.g., from Fig. 2, (SFO, BWI) is one of these pairs,
and the associated key is the squared distance d(SFO, BWI).) This can be implemented
using your QuakeHeap data structure from Programming Assignment 1.

Initially, all the points except the start point s0 are inserted into a kd-tree, we compute
s0’s nearest neighbor, and add this pair to the initially empty priority queue. Then we each
iteration, we extract the closest pair (pi, pj) from the priority queue, add this edge to the
spanning tree edge list, add pj to the set S, remove pj from the kd-tree, and finally update
the nearest neighbor pairs and insert them in the priority queue based on squared distances.

Dependents Lists: The final question that we need to answer is how to determine which points
of S need their nearest neighbors updated at the end of each iteration. Certainly, we need
to do this for the new point pj . In addition, every point pk ∈ S that depends on pj as its
nearest neighbor must also be updated.

We say that pk depends on pj ∈ P \S if pj is the nearest neighbor of pk. The set of all points
in S that depend on pj constitute its dependents list, denoted dep(pj). Whenever a point
pj ∈ P \ S is added to the spanning tree, we need to update the nearest neighbor of pj and
all the members of dep(pj). For example, for the situation shown on the right side of Fig. 2,
we have the following. (Note that the points of S do not need dependents lists.)

Point (p) Dependency list (dep(p))

BWI {SFO}
DCA {DFW}
SEA {}
IAD {ORD, ATL}
LAX {}

Each such list can be stored, for example, as a Java ArrayList. There is one for each point
of P \ S. Initially, all of these lists are empty. Whenever we add an entry (pi, pj) is added to
the priority queue, we add pi to dep(pj) as well.

So, when pj is added to the spanning tree, we iterate through the members of dep(pj) and
compute its new nearest neighbor. But now the question emerges, how to we access this
dependency list efficiently? We can do this by creating one more data structure:

3

Hash Map: to store the points of P \ S. Each element of the map is associated with its
dependents list. This can be done using a Java HashMap.

In the parlance of this assignment, each point is a labeled point, say LPoint. An array
list of points is of type ArrayList<LPoint>. A hash map that maps a point to its
associated dependents list is therefore HashMap<LPoint, ArrayList<LPoint>>. If we
create such an object, called, say, dependents, and given a point pt, we can access
dep(pt) with: ArrayList<LPoint> dep = dependents.get(pt).

Redundant Priority Queue Entries: There is a subtle issue with our algorithm as described.
Whenever we compute a new nearest-neighbor pair (pi, pj) to add to our priority queue, it is
possible that there was already a nearest neighbor pair (pi, p

′
j) in the queue. Ideally, we should

remove this from the priority queue, but most priority queues (including our QuakeHeap) do
not support deletion.

There is an easy fix, however. The only reason that one pair (pi, pj) overrides another (pi, p
′
j)

is that p′j was added to the spanning tree. Whenever we remove a pair (pi, p
′
j) from the

priority queue, we check whether p′j is in the tree. We can do this efficiently by accessing our
set data structure for S. If so, we ignore this edge and go on to the next one.

Summary: That’s a lot of data structures! But this is typical of many efficient algorithms. We
need to access the various structures as efficiently as possible, and the best way to do this
is to store them in an appropriate data structure. Fig. 3 demonstrates the iterations of the
algorithm. For further information about the algorithm, consult the lecture notes.

DCA

DFW

IAD

SEA

ORD

SFO

DCA

DFW

IAD

SEAORD

SFO

DCA

DFW

IAD
SEA

ORD

SFO

ATL ATL

DCA

DFW

IAD
SEA

ORD

SFO

ATL

DCA

DFW

IAD

SFO

ATL

DCA

DFW

IAD

SEA

SFO

ATL

DFW

IAD

ORD

SFO

ATL

ORD

DCA

ATL

NN:(SFO->DFW) NN:(DFW->ORD) (SFO->ORD)

NN:(DFW->SEA) (ORD->ATL) NN:(ATL->IAD) (ORD->IAD)

NN:(ATL->SEA) (IAD->SEA)
(ORD->DCA) (SEA->DCA) (SFO->DCA)

Add:(SEA,DCA)

SEA

Add:(ORD,ATL)

Add:(IAD,SEA)
Add:(ORD,IAD)

Add:(DFW,ORD)

Add:(SFO,DFW)

SEA

(ORD->SEA) (SFO->SEA)

NN:(ATL->DCA) (DFW->DCA) (IAD->DCA)

ORD

(SFO->ATL) (SFO->IAD)

Final

Figure 3: Prim’s EMST algorithm walkthrough.

Requirements: Your program will implement the following functions for the EMSTree. While you
can implement the operations internally however you like (subject to the style and efficiency

4

requirements given below), the following function signatures should not be altered. As part
of the skeleton code, we will provide you with the LabeledPoint2D interface, and two useful
classes, Point2D and Rectangle2D. (If you wish to modify these objects, do not alter them.
Instead, create your own copy, say MyPoint2D, and make modifications there.)

EMSTree(Rectangle2D bbox): This initializes by creating the basic objects (set, kd-tree,
heap, hashmap) needed by the EMST algorithm. The bounding box can be passed into
your constructor for your kd-tree. You may set the other parameters for the kd-tree and
quakeheap as you like. (We would suggest using a max-height-difference of 2 for your
kd-tree and a number of levels of 10 for your quakeheap.)

void addPoint(LPoint pt): This inserts a point into the set P of points that will form the
EMST. The EMST is not constructed at this point, and no error checking is done.

We would recommend doing two things. First, insert pt into your set of points P . Sec-
ond, create a dependents list for this point. If you are using a hash map of array lists for
dependents, this can be done with dependents.put(pt, new ArrayList<LPoint>()).

void clear(): This removes all the points from your points set P , clears the edge list for
the EMST. You can also clear the kd-tree, the priority queue, and the hash map used
for the dependents lists.

int size(): Returns the current number of points in P .

ArrayList<String> buildEMST(LPoint start) throws Exception: Builds the EMST for
the current point set P , where start is the starting vertex (called s0 above). For
the purposes of testing, it returns a Java ArrayList of strings (described below) that
provides a summary of the construction process.

This function checks for the validity of the point set. If any point lies outside the bound-
ing box, it throws an Exception with the error message "Attempt to insert a point

outside bounding box". If there are two or more points with the same coordinates,
it throws an Exception with the message "Attempt to insert a duplicate point".
(Update: 4/30) If multiple points fail these conditions, the first to be added triggers the
exception. If an exception is thrown, the EMST that results is empty.

This function computes the entire EMST. It begins by clearing out the point set S, the
list of tree edges, the kd-tree, and the priority queue. It clears the dependents lists for
all the points. It inserts all the points into the kd-tree except the start point. And then
it starts Prim’s algorithm.

ArrayList<String> listTree(): This lists the edges of the EMST. If the tree has not yet
been built (e.g., points were added but buildEMST was not called) then it returns an
empty list. Otherwise, it returns the edges in the order that they were added by Prim’s
algorithm. Assuming that you represent your each edges as Pair<LPoint>, the edge e

could be listed using:

"(" + e.getFirst().getLabel() + "," + e.getSecond().getLabel() + ")"

For example, the tree shown in Fig. 3 would generate an array list with the following 6
entries

"(SFO,DFW)" "(DFW,ORD)" "(ORD,ATL)" "(ORD,IAD)" "(IAD,SEA)" "(SEA,DCA)"

5

Summary of buildEMST: The array list returned by your buildEMST function (see above)
summarizes the algorithm’s processing. It contains a line for every new point inserted
into the EMST. The first line just gives the pair consisting of the start vertex (start)
and its nearest-neighbor (nn),

"new-nn: (" + start.getLabel() + "->" + nn.getLabel() + ")"

(This is the first entry that is placed in your priority queue.)

For each remaining point added to the tree, it prints the newly added edge. If you store
your edge as a Pair object, you can just rely on the toString method provided by this
object. For example, if edge denotes the newly created pair, of type Pair<LPoint>, the
added edge is reported with:

"add: " + edge + " new-nn:"

Following this, on the same line, you will output all the updated nearest-neighbor pairs.
For each new nearest-neighbor pair consisting of a point pt from S and its nearest
neighbor nn from P \ S, the output consists of the labels of these two points:

"(" + pt.getLabel() + "->" + nn.getLabel() + ")"

For example, when we added the edge (DFW,ORD) in Fig. 3, we generated the following
new nearest-neighbor pairs:

(DFW->SEA) (ORD->ATL) (SFO->ATL)

There is one final issue. For testing purposes, we need your nearest-neighbor list to
match ours exactly. For this reason, you should sort the entries of this list. You can do
this easily using Collections.sort. (There is no need to design a special comparator.)

Below, we given an example of the seven entries in the array list returned by buildEMST

on the example from Fig. 3. (The “... more, omitted” is not really in the string.
We just ran out of space!)

new-nn: (SFO->DFW)

add: (SFO:(12.0,88.0)--DFW:(30.0,84.0)) new-nn: (DFW->ORD) (SFO->ORD)

add: (DFW:(30.0,84.0)--ORD:(19.0,58.0)) new-nn: (DFW->SEA) (ORD->ATL) (SFO->ATL)

add: (ORD:(19.0,58.0)--ATL:(5.0,51.0)) new-nn: (ATL->IAD) (ORD->IAD) (SFO->IAD)

add: (ORD:(19.0,58.0)--IAD:(32.0,41.0)) new-nn: (ATL->SEA) (IAD->SEA) (ORD->SEA) (SFO->SEA)

add: (IAD:(32.0,41.0)--SEA:(51.0,53.0)) new-nn: (ATL->DCA) (DFW->DCA) ... more, omitted

add: (SEA:(51.0,53.0)--DCA:(65.0,68.0)) new-nn:

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You should
replace the EMSTree.java file with your own. We have provided a number of utility objects
for you, include the Point2D, Rectangle2D, and Airport from the previous assignment. We
have also provided Pair for storing edges.

You must use the package “cmsc420 s22” for all your source files. (This is required for
the autgrader to work.) As usual, we will provide a driver program (Tester.java and
CommandHandler.java) that will input a set of commands. Here is a portion of the class’s
public interface (and of course, you will add all the private data and helper functions). You
should not modify the signature of the public functions, but you are free to set up the internal
structure however you like.

6

http://www.cs.umd.edu/class/spring2022/cmsc420-0101/project.html

package cmsc420_s22;

import java.util.ArrayList;

public class EMSTree<LPoint extends LabeledPoint2D> {

public EMSTree(Rectangle2D bbox) { ... }

public void addPoint(LPoint pt) { ... }

public void clear() { ... }

public int size() { ... }

public ArrayList<String> buildEMST(LPoint start) throws Exception { ... }

public ArrayList<String> listEMST() { ... }

// ... and so on

}

Hints: (Update: 4/30) Here are some of the data objects that were referred to in the above
descriptions and how they might be implemented. These are best implemented as private
members of your EMSTree structure. (The following are only suggestions, and you may
implement these how you, subject to the efficiency requirements below.)

ArrayList<LPoint> pointList All the points (P)
HashSet<LPoint> inEMST Subset of points in the tree (S)
ArrayList<Pair<LPoint>> edgeList List of edges in the EMST
HBkdTree<LPoint> kdTree The kd-tree for P \ S
QuakeHeap<Double, Pair<LPoint>> heap priority queue of NN pairs
HashMap<LPoint, ArrayList<LPoint>> dependents dependents lists

We will provide the same objects as in Programming Assignment 2, including Point2D,
Rectangle2D, and a simple class Pair for storing pairs. Although we have included skeletons
of QuakeHeap.java and HBkdTree.java in the skeleton code, you can replace them with any
objects you wish.

Efficiency requirements: (Update 4/30) While you are encouraged to use your own QuakeHeap
and HBkdTree data structures, you are allowed to use any comparably efficient structure
(e.g., you may use Java’s built-in PriorityQueue data structure). You may substitute other
structures for the ones we have recommended (e.g., HashSet, HashMap, ArrayList) provided
that the required operations can be performed efficiently, say in O(log n) time.

Testing/Grading: (Update 4/30) We will use the standard Gradescope-based grading process
that we have used in previous assignments.

The autograder will provide files Point2D.java, LabeledPoint2D.java, Rectangle2D.java,
Pair.java, Tester.java, and CommandHandler.java. You will need to upload all other files
as needed by your program. At a minimum, this will consist of EMSTree.java. If you use
any other files, such as QuakeHeap.java and HBkdTree.java, these will be uploaded as well.
(Update 5/1) An example of what your Gradescope submission window might look like is
shown in Fig. 4

7

Figure 4: Possible Gradescope submission window.

8

