
CMSC 420 Dave Mount

CMSC 420: Lecture X02
Applications of Data Structures: Euclidean MST

Supplemental

Data Structures and Algorithms: Throughout the semester, we have often explained our in-
terest in data structures on the basis of their application to transactional and query-based
systems. For example, “find the student with ID 987654321 in the university database” or
“how many patients in my medical database have ages between 50–60 and blood pressure
over 120?” or “what is the nearest coffee store to my current location?”.

Data structures are often used in other contexts as well. Among the most common is in
algorithm design. For example, Dijkstra’s shortest-path algorithm requires the use of pri-
ority queue to determine the order in which vertices are processed, and Kruskal’s minimum
spanning tree algorithm uses a union-find data structure to determine whether two nodes are
in the same partial spanning tree. The fastest versions of these algorithms are based on the
fastest versions of these data structures.

In this lecture, we will see how data structures of various sorts can be combined to solve
interesting computational problems. We will consider is the Euclidean minimum spanning
tree problem.

Minimum Spanning Trees: A common problem in communications networks and circuit design
is that of connecting together a set of nodes (communication sites or circuit components)
by a network of minimal total length (where length is the sum of the lengths of connecting
wires). We assume that the network is undirected. To minimize the length of the connecting
network, it never pays to have any cycles (since we could break any cycle without destroying
connectivity and decrease the total length). Since the resulting connection graph is connected,
undirected, and acyclic, it is a free tree.

The computational problem is called the minimum spanning tree problem (MST for short).
More formally, given a connected, undirected graph G = (V,E), a spanning tree is an acyclic
subset of edges T ⊆ E that connects all the vertices together (see Fig. 1(a)). Assuming that
each edge (u, v) of G has a numeric weight or cost, w(u, v), (may be zero or negative) we
define the cost of a spanning tree T to be the sum of edges in the spanning tree

w(T ) =
∑

(u,v)∈T

w(u, v).

a

b

c

d

e

f

g

4

2

7

9

8

1

8

9
5

6

2

10

a

b

c

d

e

f

g

4

2

7

9

8

1

8

9
5

6

2

10
cost = 22 cost = 22

a

b

c

d

e

f

g

4

2

7

9

8

1

8

9
5

6

2

10
cost = 50

(a) (b) (c)

Fig. 1: Spanning trees for a graph. ((b) and (c) are minimum spanning trees).

Lecture X02 1 Spring 2022



CMSC 420 Dave Mount

A minimum spanning tree (MST) is a spanning tree of minimum weight. Note that the
minimum spanning tree may not be unique (see Fig. 1(b) and (c)), but it is true that if all
the edge weights are distinct, then the MST will be distinct. This is a rather subtle fact,
which we will not prove.

The following lemma provides a few useful facts about spanning trees (minimum or not).

Lemma: (i) A spanning tree for a graph with n vertices has exactly n− 1 edges.

(ii) There exists a unique path between any two vertices of a spanning tree.

(iii) Adding any edge to a spanning tree creates a unique cycle. Breaking any edge on
this cycle results in a spanning tree.

Euclidean Minimum Spanning Tree: Spanning trees are often built in geometric settings. We
are given a set P = {p1, . . . , pn} of n points in Rd. For concreteness, let’s assume that the
dimension is 2, and each point pi = (xi, yi). We can define the spanning tree naturally in
this context. Consider the graph whose vertex set is P and whose edges consist of all the

(
n
2

)
pairs (pi, pj). We define the weight of an edge w(pi, pj) to be the Euclidean distance between
them, that is

w(pi, pj) =
√

(xi − xj)2 + (yi − yj)2.

This weighted graph is called the Euclidean graph of the point set. The minimum spanning
tree of this graph is called Euclidean minimum spanning tree or, EMST for short (see Fig. 2).

DCA

DFW

IAD

LAX

SEA

ORD

SFO

BWI

ATL

DCA
DFW

IAD

LAX

ORD

SFO

BWI

ATL

EMST(P )

SEA

Point set P

Fig. 2: Euclidean Minimum Spanning Tree.

An interesting fact about MSTs is that they are determined by the order of the edges, not the
actual values. So, for our purposes, rather than using the actual Euclidean distance, we can
save the effort of computing the square root, and instead use the squared Euclidean distance.
Henceforth, we assume that the edge weight is:

d(pi, pj) = (xi − xj)
2 + (yi − yj)

2.

Not only is the more efficient, it has the advantage that integer-valued coordinates lead to
integer-valued squared distances, and so we do not need to worry about floating-point round-
off errors causing problems.

The EMST is an important geometric structure for numerous reasons:

Lecture X02 2 Spring 2022



CMSC 420 Dave Mount

� It is often used as the first step in clustering algorithms in machine learning

� It is the first step in approximation algorithms for the travelling salesman problem (TSP)

� It is used in constructing wireless ad hoc networks

There are many different algorithms for computing MSTs, including Kruskal’s algorithm,
Prim’s algorithm, and Boruvka’s algorithm. All of them can be extended to compute EMSTs,
but the problem is the Euclidean graph has O(n2) edges. If n is large (say, n = 1, 000, 000)
the total number of edges in the Euclidean graph is huge. Since the spanning tree has only
n− 1

Generic approach: The standard algorithms for computing MSTs are all greedy (Kruskal’s,
Prim’s, and Boruvka’s). The intuition is simple. Add the lightest (lowest weight) edge(s)
you can, provided it does not create a cycle. The algorithms differ only in how these lightest
edges are identified.

The correctness of these algorithms is based on lemma that shows that whenever the vertices
are partitioned into two groups, the lightest edge between the two groups is always safe to
add to the MST. In the following, given a subset S ⊂ P , we use the notation P \ S (set
subtraction) to denote the elements of P that are not in S.

Lemma: Given a point set P and any nonempty proper subset S ⊂ P , the closest pair of
points pi ∈ S and pj ∈ P \ S is safe to add to EMST of P .

Prim’s Algorithm: Prim’s MST algorithm is given a starting vertex s0, and builds the spanning
tree by repeatedly adding the point that lies outside the tree, but is closest to some point of
the tree. A new point is added with each iteration. Let S denote the set of points that are
currently in the spanning tree (see the shaded region in Fig. 3). Initially S = {s0} and the
algorithm terminates when all the points of P are in S.

DCA
DFW

IAD

LAX

SEA

ORD

SFO BWI

ATL

DCA
DFW

IAD

LAX

SFO BWI

ORD

SEA

New nearest

(ORD,IAD)

S

P \ S

S

(IAD->LAX)

(ATL->LAX)

(ORD->SEA)

ATL

P \ S

neighbors:

Add:

Fig. 3: Originally, S = {SFO, DFW, ORD, ATL} with the nearest-neighbor pairs (SFO,BWI),
(DFW,DCA),(ORD,IAD), and (ATL,IAD). The closest of these, (ORD,IAD) is added to the EMST, IAD
is added to S, and new nearest neighbors (ATL,IAD), (ORD,IAD), and (IAD,SEA) are computed.

Each point pi ∈ S computes its nearest point in the complement set P \ S (indicated by red
broken lines in the figure). Let’s call these the nearest neighbor pairs. Let (pi, pj) be the
closest of all the nearest neighbors. In the next iteration, this edge is added to the spanning
tree, pj is added to S, and we need to update the nearest neighbors. This will certainly
include pi, pj , and any it will also include any other points of S whose nearest neighbor was
pj (see Fig. 3). The process is repeated n − 1 times, after which all the points have been
added to the spanning tree.

Lecture X02 3 Spring 2022



CMSC 420 Dave Mount

Implementing this algorithm efficiently will involve a number of data structures.

List: to store the edges of the spanning tree. This can be implemented using a Java
ArrayList or LinkedList. An edge is naturally represented as a pair of points. Let us
assume we have access to such a class, called Pair).

Set: to maintain the points of S. This must support the operations insert and contains

(to test membership). This can be done using any set object, for example a HashSet in
Java.

Spatial index: to store the points of P \S waiting to be inserted into the EMST. This must
support the operations of insert, delete, and nearestNeighbor. In a nearest-neighbor
query, we are given a query point q, and the answer is the closest point in the tree to q.
This can be done using kd-tree, for example.

Priority Queue: to store the nearest-neighbor pairs ordered by their distance. Each entry
stores the associated pair of points (e.g., from Fig. 3, (SFO, BWI) is one of these pairs,
and the associated key is the squared distance d(SFO, BWI).) This can be implemented
using a heap data structure.

Initially, all the points except the start point s0 are inserted into a kd-tree, we compute
s0’s nearest neighbor, and add this pair to the initially empty priority queue. Then we each
iteration, we extract the closest pair (pi, pj) from the priority queue, add this edge to the
spanning tree edge list, add pj to the set S, remove pj from the kd-tree, and finally update
the nearest neighbor pairs and insert them in the priority queue based on squared distances.

Dependents Lists: The final question that we need to answer is how to determine which points
of S need their nearest neighbors updated at the end of each iteration. Certainly, we need
to do this for the new point pj . In addition, every point pk ∈ S that depends on pj as its
nearest neighbor must also be updated.

We say that pk depends on pj ∈ P \S if pj is the nearest neighbor of pk. The set of all points
in S that depend on pj constitute its dependents list, denoted dep(pj). Whenever a point
pj ∈ P \ S is added to the spanning tree, we need to update the nearest neighbor of pj and
all the members of dep(pj). For example, for the situation shown on the right side of Fig. 3,
we have the following. (Note that the points of S do not need dependents lists.)

Point (p) Dependency list (dep(p))

BWI {SFO}
DCA {DFW}
SEA {}
IAD {ORD, ATL}
LAX {}

Each such list can be stored (for example, as a Java ArrayList). There is one for each point
of P \ S. Initially, all of these lists are empty. Whenever we add an entry (pi, pj) is added to
the priority queue, we add pi to dep(pj) as well.

So, when pj is added to the spanning tree, we iterate through the members of dep(pj) and
compute its new nearest neighbor. But now the question emerges, how to we access this
dependency list efficiently? We can do this by creating one more data structure:

Lecture X02 4 Spring 2022



CMSC 420 Dave Mount

Hash Map: to store the points of P \ S. Each element of the map is associated with its
dependents list. (For example, this can be done using a Java HashMap.)

Redundant Priority Queue Entries: There is an issue with our algorithm as described. When-
ever we compute a new nearest-neighbor pair (pi, pj) to add to our priority queue, it is possible
that there was already a nearest neighbor pair (pi, p

′
j) in the queue. Ideally, we should remove

this from the priority queue, but most priority queues do not support efficient deletion.

There is an easy fix, however. The only reason that one pair (pi, pj) overrides another (pi, p
′
j)

is that p′j was added to the spanning tree. Whenever we remove a pair (pi, p
′
j) from the

priority queue, we check whether p′j is in the tree. We can do this efficiently by accessing our
set data structure for S. If so, we ignore this edge and go on to the next one.

Example: An example is shown in Fig. 4. With each step we extract the lightest edge from the
priority queue (illustrated in red broken lines) and add it to the spanning tree (shown as black
edges). The endpoint of this edge is added to the spanning tree and removed from the kd-tree.
This new point will have one or more nearest-neighbor pairs (red edges) incident on it. These
are the point’s dependents. We compute new nearest neighbors for all the dependents and
insert them in the priority queue. The algorithm terminates when all the points have been
added to the tree, or equivalently when the kd-tree is empty.

DCA

DFW

IAD

SEA

ORD

SFO

DCA

DFW

IAD

SEAORD

SFO

DCA

DFW

IAD
SEA

ORD

SFO

ATL ATL

DCA

DFW

IAD
SEA

ORD

SFO

ATL

DCA

DFW

IAD

SFO

ATL

DCA

DFW

IAD

SEA

SFO

ATL

DFW

IAD

ORD

SFO

ATL

ORD

DCA

ATL

NN:(SFO->DFW) NN:(DFW->ORD) (SFO->ORD)

NN:(DFW->SEA) (ORD->ATL) NN:(ATL->IAD) (ORD->IAD)

NN:(ATL->SEA) (IAD->SEA)
(ORD->DCA) (SEA->DCA) (SFO->DCA)

Add:(SEA,DCA)

SEA

Add:(ORD,ATL)

Add:(IAD,SEA)
Add:(ORD,IAD)

Add:(DFW,ORD)

Add:(SFO,DFW)

SEA

(ORD->SEA) (SFO->SEA)

NN:(ATL->DCA) (DFW->DCA) (IAD->DCA)

ORD

(SFO->ATL) (SFO->IAD)

Final

Fig. 4: Full execution of Prim’s EMST algorithm on a small example. The text in black indicates
the edge that is added to the EMST, and the text in red indicates the new nearest-neighbor pairs.

Implementing the Algorithm: To convert the above description into pseudocode, let’s give
some better names to our objects. First, it will be useful to define a new class, called Pair

that stores a pair of points. It supports functions getFirst() and getSecond(), which ex-
tract the first and second components of the pair. We will use this for representing edges of

Lecture X02 5 Spring 2022



CMSC 420 Dave Mount

the EMST, and we will also use this to represent nearest neighbor pairs (pi → pj), where
pi ∈ S and pj ∈ P \ S.

Let inEMST denote our set data structure storing the subset of points S that lie within the
current EMST. We can implement it in Java using a HashSet. Let kdTree denote the kd-tree
storing the points of P \ S. Let heap denote the current priority queue consisting of nearest-
neighbor pairs. We can use any standard heap data structure. Let edgeList denote the list
of edge in the EMST. It can be represented as a Java ArrayList. Finally, dependents is a
hash map, where each entry is accessed by a point. The associated value is a Java ArrayList

of the dependents for this point.

Adds a single edge to the EMST
void addEdge(Pair<Point> edge) {

Point pt2 = edge.getSecond() // endpoint to add to EMST

edgeList.add(edge) // add edge to the EMST

inEMST.add(pt2) // add pt2 to the EMST

kdTree.delete(pt2) // remove pt2 from the kd-tree

ArrayList<Point> dep2 = dependents.get(pt2) // get pt2’s dependent points

dep2.add(pt2) // include pt2 as well

forall (Point pt3 in dep2) { // compute new nearest neighbors

Point nn3 = kdTree.nearestNeighbor(pt3) // pt3’s nearest neighbor

if (nn3 == null) break // out of points? -- we’re done

addNearNeighbor(pt3, nn3) // add this near-neighbor pair

}

}

Before presenting Prim’s algorithm, we first introduce a couple of utility functions. The first,
addEdge adds a single edge to the spanning tree. This performs all the necessary actions for
adding a new edge. It adds the edge to the list of EMST edges, it includes the new point
in the EMST, it removes this point from the kd-tree, and it goes through all the point’s
dependents and computes new nearest neighbors for each. The resulting pairs are inserted
into the priority queue by invoking the other utility function addNearNeighbor. Note that
whenever a new pair (pt->nn) is added to the priority queue, we add pt to the dependents
list for nn. This is shown in the code block.

Adds a new nearest-neighbor pair
void addNearNeighbor(Point pt, Point nn) {

double dist = d(pt, nn) // squared distance to nearest neighbor

Pair<Point> pair = new Pair<Point>(pt, nn) // new nearest-neighbor pair

heap.insert(dist, pair) // add to priority queue

dependents.get(nn).add(pt) // add to nn’s dependents list

}

There are a couple oddities you may wonder about with the function addEdge. First off, when
we invoke the kd-tree to compute the nearest neighbor of pt3, why did we check whether
the result is null? This is because when the very last point is added to the spanning tree
and is deleted from the kd-tree, the kd-tree is now empty. We know that the algorithm can
terminate at this point, so we simply exit the loop and return from the function. The second
oddity is that we add pt2 to its own dependency list. Why? This is just a coding trick. We
need to compute nearest neighbors for all of pt2’s dependents and we need to do this for pt2

Lecture X02 6 Spring 2022



CMSC 420 Dave Mount

as well. By adding pt2 to it’s own list, we don’t need to process it separately. (It’s just a
lazy coding trick.) The utility addNearNeighbor is shown in the following code block.

Given this, we can now present the pseudocode for Prim’s algorithm. It is given the starting
point, start, as its argument. We assume that the points are stored in a global list pointList.
We assume that the various data structures edgeList, inEMST, kdTree, and heap are all
globals. The process begins by initializing the various data structures by wiping them out
(presented below in the function initializeEMST.) It inserts the start point and initializes
the priority queue with its nearest neighbor. We then repeatedly extract pairs from the
priority queue and add them to the EMST (checking first that the entry is not redundant).

Prim’s EMST Algorithm
void buildEMST(Point start) {

initializeEMST(start) // initialize

Point nn = kdTree.nearestNeighbor(start) // get start’s nearest

if (nn == null) return // no more points -- done

addNearNeighbor(start, nn) // add nearest neighbor pair

while (kdTree is not empty) {

Pair<Point> edge = heap.extractMin() // extract next edge

Point pt2 = edge.getSecond() // get destination end point

if (pt2 is not in inEMST) { // not redundant?

addEdge(edge) // add the edge to the EMST

}

}

}

Finally, we present the initialization. It clears out all the structures and then inserts all the
points, except for start in the kd-tree.

Initialization for Prim’s algorithm
void initializeEMST(Point start) {

edgeList.clear() // clear the edge list

inEMST.clear() // clear the EMST set

heap.clear() // clear the heap

for each (dep in dependents) { // clear all the dependents

dep.clear()

}

kdTree.clear() // clear the kd-tree

for each (pt in pointList) // add all but start

if (pt != start) kdTree.insert(pt)

inEMST.add(start) // add start to EMST

Analysis: The correctness of this algorithm follows from the fact that we are always selecting the
lightest edge from the current spanning tree to the remaining points.

It is trickier to analyze the running time. Each iteration of the algorithm involves removing
a pair from the heap, adding the edge to the tree, and updating the nearest neighbors for the
dependents of the newly added point. This last step dominates the running time. There are
two issues here. The first is how fast we can compute nearest neighbors in a kd-tree. While
there are no good upper bounds (the query time can be O(n) for pathological data sets) the
running time is actually closer to O(log n) for typical data sets.

Lecture X02 7 Spring 2022



CMSC 420 Dave Mount

This then leads to an overall running time of O(n · c(n) log n), where c(n) is the average
number of times each point needs to update its nearest neighbor. This seems to be an
interesting question for further research. I would expect that for uniformly distributed point
sets c(n) = O(

√
n) in the plane, but I do not have a proof of this. It might be a worthwhile

topic for an empirical algorithm analysis.

Lecture X02 8 Spring 2022


