Data structures are **FUNDAMENTAL!**
- All fields of CS involve storing, retrieving, and processing data
- Information retrieval
- Geographic Inf. Systems
- Machine Learning
- Text/String processing
- Computer graphics
- ...

Course Overview:
- Fundamental data structures + algorithms
- Mathematical techniques for analyzing them
- Implementation

Common:
- \(T(1) \): constant time
 - \(O(1) \) \(\Rightarrow \) \(T(1) \) \(\Rightarrow \) \(O(1) \)
- \(O(\log n) \): log time (very good!)
 - \(\log n \ll n^{0.1} \)
- \(O(n^p) \): (\(p \) = constant) Poly time
 - eq. \(O(n^2) \)

Hash Map
- \(O(1) \)

Binary Search
- \(O(\log n) \)

Asymptotic: “Big-O”
- Ignore constants
- Focus on large \(n \)

Geometric Search
- \(O(\log n) \)

Asymptotic Analysis:
- Run time as a function of \(n \) = no. of items
- Worst-case, average-case, randomized
- Amortized: Average over a series of ops.

Basic elements in study of data structures
- Modeling: How real-world objects are encoded
- Operations: Allowed functions to access + modify structure
- Representation: Mapping to memory
- Algorithms: How are ops. performed?

Introduction to Data Structures
- Elements of data structures
- Our approach
- Short review of asymptotics

Our approach:
- Theoretical: Algorithms + Asymptotic Analysis
- Practical: Implementation + practical efficiency