Linear List ADT:
Stores a sequence of elements \(\langle a_1, a_2, \ldots, a_n \rangle \). Operations:
- \text{init}() - create an empty list
- \text{get}(i) - returns \(a_i \)
- \text{set}(i, x) - sets \(i \)th element to \(x \)
- \text{insert}(i, x) - inserts \(x \) prior to \(i \)th (moving others back)
- \text{delete}(i) - deletes \(i \)th item (moving others up)
- \text{length}() - returns num. of items

Implementations:
- Sequential: Store items in an array
 \[
 a_1, a_2, \ldots, a_n
 \]
- Linked allocation: linked list
 - Singly: head → \[a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_n \] → tail
 - Doubly: head → \[a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_n \] → tail

Performance varies with implementation

Abstract Data Type (ADT):
- Abstracts the functional elements of a data structure (math) from its implementation (algorithm/programming)

Doubling Reallocation:
- When array of size \(n \) overflows
 - allocate new array size \(2n \)
 - copy old to new
 - remove old array

Dynamic Lists + Sequential Allocation: What to do when your array runs out of space?
- Deque ("deck"): Can insert or delete from either end

Basic Data Structures I
- ADTs
- Lists, Stacks, Queues
- Sequential Allocation

Stack: All access from one side
- \text{top} - push + pop

Queue: FIFO list: enqueue inserts at tail and dequeue deletes from head
- Double-ended queue
Cost model (Actual cost)
Cheap: No reallocation → 1 unit
Expensive: Array of size \(n \) \(\geq 2n+1 \) is reallocated to size \(2n \)

Dynamic (Sequential) Allocation
- When we overflow double
- Example: Stack

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c} \hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
| \hline
\end{array}
\]

Total = \(17 + (2 + 4 + 8 + 16 + 32) = 79 \)

\[
\frac{79}{17} \approx 4...
\]

Basic Data Structures II
- Amortized analysis of dynamic stack

Amortized Cost: Starting from an empty structure, suppose that any sequence of \(m \) ops takes time \(T(m) \).

The amortized cost is \(\frac{T(m)}{m} \).

Thm: Starting from an empty stack, the amortized cost of our stack operations is at most \(\frac{5}{2} \)

[i.e. any seq. of \(m \) ops has cost \(\leq 5m \)]

Charging Argument:
- Each request of push/pop we charge user 5 work tokens
- We use 1 token to pay for the operation + put other 4 in bank account.
- Will show there is enough in bank account to pay actual costs.

Proof:
- Break the full sequence after each reallocation → run
\[
12345,67891011121314151617
\]
- At start of a run there are \(n+1 \) items in stack and array size is \(2n \)
- There are at least \(n \) ops before the end of run
- During this time we collect at least \(5n \) tokens \(> 3.5n \) tokens
- Next reallocation costs \(4n \), but we have enough saved!

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c} \hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
| \hline
\end{array}
\]

Actual Tokens:
\[
\begin{array}{c|c|c|c|c} \hline
+1 & +1 & +1 & +1 \\
\hline
+5 & +5 & +5 & +5 & = 20 \end{array}
\]
Fixed Increment: Increase by a fixed constant
- \(n \rightarrow n + 100 \)

Fixed factor: Increase by a fixed constant factor (not nec. 2)
- \(n \rightarrow 5 \cdot n \)

Squaring: Square the size (or some other power)
- \(n \rightarrow n^2 \) or \(n \rightarrow n^{1.57} \)

Which of these provide \(O(1) \) amortized cost per operation?

Leave as exercise (Spoiler alert!)

- Fixed increment: no
- Fixed factor: yes
- Squaring: ?? (depends on cost model)

\(4 \rightarrow 16 \rightarrow 256 \rightarrow \ldots \)

Dynamic Stack:
- Showed doubling \(\Rightarrow \) Amortized \(O(1) \)
- Other strategies?

Basic Data Structures III
- Dynamic Stack - Wrap-up
- Multilists & Sparse Matrices

Node:
- Idea: Store only non-zero entries linked by row and column

Multilists: Lists of lists

Sparse Matrices:
- An \(nxm \) matrix has \(n \cdot m \) entries and takes \(\text{(naively)} O(n \cdot m) \) space

Sparse matrix: Most entries are zero