Dynamic Finger Theorem:

Keys: x_1, \ldots, x_n. We perform accesses $x_{i_1}, x_{i_2}, \ldots, x_{i_m}$. Let $\Delta_j = i_j - i_{j-1}$: distance between consecutive items.

Thm: Total access time is $O(m \cdot n \log n + \sum_{j} (1 + \log \Delta_j))$.

Static Optimality:

- Suppose key x_i is accessed with prob p_i. ($\sum_i p_i = 1$)
- Information Theory: Best possible binary search: tree answers queries in expected time $O(H)$ where $H = \sum_i p_i \log \frac{1}{p_i} = \text{Entropy}$

Static Optimality Theorem:

Given a seq. of m ops. on splay tree with keys x_1, \ldots, x_n, where x_i is accessed q_i times. Let $p_i = q_i/m$. Then total time is $O(m \cdot \sum_i p_i \log p_i)$.

Splay Trees are Amazingly Adaptive!

Balance Theorem: Starting with an empty dictionary, any sequence of m accesses takes total time $O(m \cdot \log n + m \cdot \log n)$ where $n = \max$ entries at any time.

Splay Trees III

Analysis:

- Amortized analysis
- Any one op might take $O(n)$
- Over a long sequence, average time is $O(\log n)$ each
- Amortized analysis is based on a sophisticated potential argument

Potential: A function of the tree's structure

- Balanced \Rightarrow Low potential
- Unbalanced \Rightarrow High potential
- Every operation tends to reduce the potential
What does entropy have to do with search times?

Keys: a, b, c, d, e, f, g

Access Probability: $\frac{1}{9} \quad \frac{1}{16} \quad \frac{1}{16} \quad \frac{1}{8} \quad \frac{1}{16} \quad \frac{1}{32} \quad \frac{1}{32} \Rightarrow \sum p_i = 1$

$= \frac{1}{2} \quad \frac{1}{2} \quad \ldots \quad \frac{1}{2^n}$

The higher the exponent the deeper the key should be.

Extended Binary Search Tree
(keys stored in leaves)

Depth:

0

1

-2

3

4

"Ordered" Huffman tree

Keys of prob $p_i = \frac{1}{2^i}$

Best depth

at depth $i=1$ $H = \sum p_i \log \frac{1}{p_i}$

$= \log \frac{1}{p_i} = \log \frac{1}{2^i} = i$

Entropy:

$H = \sum p_i \log \frac{1}{p_i}$
Multiway Search Trees:

- Most large data structures reside on disk storage
- Organized in blocks/pages
- Latency: High start-up time
- Want to minimize no. of blocks accessed

B-Tree:
- Perhaps the most widely used search tree
- 1970 - Bayer & McCreight
- Databases
- Numerous variants

B-Tree: of order \(m \) \((\geq 3) \)
- Root is leaf or has \(\geq 2 \) children
- Non-root nodes have \(\lceil \frac{m}{2} \rceil \) to \(m \) children [null for leaves]
- \(k \) children \(\Rightarrow k-1 \) key-values
- All leaves at same level

Example: \(m = 5 \)

\[\log_2^n = \frac{1}{2} \cdot \frac{n}{\log_2^m} \]

Class BTreeNode:

\[
\begin{array}{c}
\text{int nChild} // no. of children \\
\text{BTreeNode child}[M] // children \\
\text{Key, key}[M-1] // keys \\
\text{Value, value}[M-1] // values
\end{array}
\]

Theorem: A B-tree of order \(m \) with \(n \) keys has height at most \((\log_2 n)/\gamma \), where \(\gamma = \log(m/2) \)

(See full notes for proof)
Key Rotation (Adoption)
- A node has too few children \([m/2] - 1\)
- Does either immediate sibling have extra? \(\geq [m/2]+1\)
- Adopt child from sibling & rotate keys
- When applicable - preferred

Node Splitting:
- After insertion, a node has too many children \(m+1\)
- We split into two nodes of sizes \(m' = [m/2]\) and \(m'' = m+1-[m/2]\)

Lemma: For all \(m \geq 2\),
\([m/2] \leq m+1-[m/2] \leq m\)
\(\Rightarrow m' + m'' \) are valid node sizes

B-Tree Restructuring:
- Generalizes 2-3 restructure
- Key rotation (Adoption)
- Splitting (insertion)
- Merging (deletion)

B-Trees II

Node Merging:
- A node has too few children \(\lceil m/2 \rceil - 1\)
- Neither sibling has extra (both \(\lceil m/2 \rceil\))
- Merge with either sibling to produce node with \(\lceil m/2 \rceil - 1 + \lceil m/2 \rceil \) child

- \(j + 3 = 5\)
- \#keys: \(1 + 2 = 3\)
Insertion:
- Find insertion point (leaf level)
- Add key/value here
- If node overfull (m keys, m+1 children)
 - Can either sibling take a child (<m)?
 - Key rotation [done]
 - Else, split
 - Promotes key
 - If root splits, add new root

Example: \(m = 5 \)

Deletion:
- Find key to delete
- Find replacement/copy
- If underfull (\(\lceil m/2 \rceil - 1 \) child)
 - If sibling can give child
 - Key rotation
 - Else (sibling has \(\lceil m/2 \rceil \))
 - Merge with sibling
 - Propagates
 - If root has 1 child, collapse root

Example: \(m = 5 \)
\(\text{B}^+ \text{-Tree:} \) Widely used!

- Store all data (key+value) **only in leaves**
- Internal nodes store keys (but only for finding leaf)
 - Note: Keys in internal nodes are not necessarily in the dictionary
- Leaves are linked using next-leaf pointer

Range Query: \((a, b)\)

- Report all keys \(x\), where \(a \leq x \leq b\)
- Find leaf containing \(a\) (or its successor)
- Using next-leaf, list until reaching \(b\)

Ex. \((m = 3\), but each leaf can store 3 keys\)

\[
\begin{array}{ccccccc}
\end{array}
\]

Since internal nodes only store keys, greater fan-out \(\Rightarrow\) fewer disk accesses

28 is not in dictionary
It is just used to find actual data in leaves