Scapegoat Trees
- Arne Anderson (1989)
- Galperin & Rivest (1993)
 - rediscovered/extended
- Amortized analysis
 - $O(\log n)$ for dictionary ops amortized (guaranteed for find)
- Just let things happen
- If subtree unbalanced
 - rebuild it

Overview:
- **Insert**:
 - same as standard BST
 - if depth too high
 - trace search path back
 - find unbalanced node - scapegoat
 - rebuild this subtree
- **Delete**:
 - same as std. BST
 - if num. of deletes is large rel. to n
 - rebuild entire tree!
 - How? Maintain $n, m = 0$
- **Find**:
 - same as std BST
 - Tree height $\leq \log_{3/2} n \approx 1.71\log n$

Recap:
- Seen many search trees
- Restructure via **rotation**
- Today: Restructure via rebuilding
- Sometimes rotation not possible
- Better mem. usage

Example:
- Restructure via rotation
 - p:
 - T:
 - $T(k) = 1 + 2T(\frac{k}{2}) = O(k)$
 - $j = \lceil \frac{k}{2} \rceil = 3$

How to rebuild?
- **Inorder traverse** p's subtree \to array $A[]$
- **buildSubtree** (A)
- $buildSubtree(A[0..k-1])$:
 - if $k = 0$ return null
 - $j = \lfloor k/2 \rfloor$; $x = A[j]$ median
 - $L \leftarrow buildSubtree(A[0..j-1])$
 - $R \leftarrow buildSubtree(A[j+1..k-1])$
 - return Node(x, L, R)

Final
- $T(k) = 1 + 2T(\frac{k}{2}) = O(k)$
Details of Operations:

Insert:
- `n++`; `m++`
- Same as std BST but keep track of inserted node's depth → `d`
- If `(d > \log_{3/2} m)`:
 - *rebuild event*
 - `trace path back to root`
 - For each node `p` visited, `size(p) =` no. of nodes in `p`'s subtree
 - If `size(p.child) > \frac{2}{3} size(p)`
 - `p` rebuild event

Delete:
- Same as std BST
 - `n--`
 - If `m > 2n`, `rebuild(root)`

Example:

Scapegoat Trees II

Insert:
```
\text{init: } n \leftarrow m \leftarrow 0 \quad \text{root} \leftarrow \text{null}
```

Delete:
- Same as std BST
 - `n--`
 - If `m > 2n`, `rebuild(root)`

Proof: By contradiction

- Suppose `p`'s depth > \log_{3/2} m
 - but \(4\) ancestors

Lemma: Given a binary tree with \(n\) nodes, if \exists node `p` of depth > \log_{3/2} \(n\), then \exists ancestor of `p` that satisfies scapegoat condition

Proof: By contradiction

- Suppose `p`'s depth > \log_{3/2} m
 - but \(4\) ancestors

Example:

- `rebuild`
 - `no more rebuild`
 - `trigger rebuild`

Proof: By contradiction

- Suppose `p`'s depth > \log_{3/2} m
 - but \(4\) ancestors

Lemma: Given a binary tree with \(n\) nodes, if \exists node `p` of depth > \log_{3/2} \(n\), then \exists ancestor of `p` that satisfies scapegoat condition

Proof: By contradiction

- Suppose `p`'s depth > \log_{3/2} m
 - but \(4\) ancestors

Lemma: Given a binary tree with \(n\) nodes, if \exists node `p` of depth > \log_{3/2} \(n\), then \exists ancestor of `p` that satisfies scapegoat condition

Proof: By contradiction

- Suppose `p`'s depth > \log_{3/2} m
 - but \(4\) ancestors

Lemma: Given a binary tree with \(n\) nodes, if \exists node `p` of depth > \log_{3/2} \(n\), then \exists ancestor of `p` that satisfies scapegoat condition

Proof: By contradiction

- Suppose `p`'s depth > \log_{3/2} m
 - but \(4\) ancestors
Theorem: Starting with an empty tree, any sequence of m dictionary operations on a scapegoat tree take time $O(m \cdot \log m)$ \([\text{Amortized: } O(\log m)]\)

Proof: (sketch)

Find: $O(\log n)$ guaranteed \([\text{Height}: O(\log n)]\)

Delete: In order to induce a rebuild, number of deletes \sim number of nodes in tree
 \rightarrow Amortize rebuild time against delete ops

Insert: Based on potential argument
 \rightarrow It takes $\sim k$ ops to cause a subtree to size k to be unbalanced.
 \rightarrow Charge rebuild time to these operations

Rebuild

Many inserts before p again is scapegoat

$O(m \cdot \log n)$ \rightarrow $n = \text{max size of tree}$
Amortized time: $O(\log n)$
Geometric Search:
- Nearest neighbors
- Range searching
- Point Location
- Intersection Search

Sofar: 1-dimensional keys
- Multi-dimensional data
- Applications:
 - Spatial databases + maps
 - Robotics + Auton. Systems
 - Vision/Graphics/Games
 - Machine Learning

Partition Trees:
- Tree structure based on
 hierarchical space partition
- Each node is associated w. a region - cell
- Each internal node stores a splitter - subdivides the cell
- External nodes store pts.

Multi-Dim vs. 1-dim Search?

Similarities:
- Tree structure
- Balance $O(\log n)$
- Internal nodes - split
- External nodes - data

Differences:
- No (natural) total order
- Need other ways to discriminate + separate
- Tree rotation may not be meaningful

External nodes store pts.

Point: A d-vector in \mathbb{R}^d
$p = (p_1, \ldots, p_d)$ $p_i \in \mathbb{R}$
Java: (p_0, \ldots, p_{d-1})

Class Point

float[] coord // coords
Point(int d)
... coord = new float[d]
int getDim() -> coord.length
float get(int i) -> coord[i]
... others: equality, distance
toString...

Quadtrees & KD Trees I

Representations:
- Scalars: Real numbers for coordinates, etc.
 - \mathbb{R}^d (x,y)
- Points: $p = (p_1, \ldots, p_d)$ in real d-dim space \mathbb{R}^d
- Other geom objects: Built from these

Radius