Example:

Kd-Tree Node:

```java
class KDNode {
    Point pt // splitting point
    int cutDim // cutting coordinate
    KDNode left // low side
    KDNode right // high side
}
```

Balanced kd-tree:
- Cutting dimension alternates (x, y, x, y, ...)
- Balanced
 - \(\text{size}(p.\text{child}) \leq \frac{1}{2} \cdot \text{size}(p) \)

How do we choose cutting dim?:
- Standard Kd-tree: cycle through them (e.g. \(d = 3: 1, 2, 3, 1, 2, 3, ... \)) based on tree depth
- Optimized Kd-tree (Bentley)
 - Based on widest dimension of pts in cell.

Quad trees & kd-Trees III

Helper:
```java
class KDNode {
    boolean onLeft(Point q) {
        \( \text{return } q[\text{cutDim}] < pt[\text{cutDim}] \)}
    }
```
KDNode insert(Point pt, KDNode p, int cd){
 if (p == null) // fell out?
 p = new KDNode(pt, cd)
 // new leaf node
 else if (p.point == pt)
 Error! Duplicate key
 else if (p.onLeft(pt))
 p.left = insert(pt, p.left, (cd+1)%dim)
 else
 p.right = insert(pt, p.right, (cd+1)%dim)
 return p
}

Kd-Tree Insertion:
(Similar to std. BSTs)
- Descend tree until cutting dimension to use
 → find pt → Error - duplicate
 → falling out
 (Although we draw extended trees, lets assume standard trees)
 → create new node
 → set cutting dim
 → find replacement
 → recur. delete replacement

Example:

Quadtrees & Kd-Trees IV

Analysis:
Runtime: $O(h)$

Can we balance the tree?
-Rotation does not make sense!!

Deletion:
- Descend path to leaf
- If found:
 - leaf node → just remove
 - internal node
 → find replacement
 → copy here
 → recur. delete replacement

Rebalance by Rebuilding:
- Rebuild subtrees as with scapegoat trees
- $O(\log n)$ amortized
- Find: $O(\log n)$ guaranteed.

Although we draw extended trees, lets assume standard trees.

This is the hardest part. See Latex notes.

Rotation does not make sense!!
Replacement Node for Deletion
- Assume deleted node is vertical (x) splitter
- Find smallest x-coord in right subtree

- Utility: \(\text{findMin}(p, q) \)
 - cut dim \(0 \rightarrow x \)
 - \(1 \rightarrow y \)
 - node \(p \rightarrow q \)
 - \(p \rightarrow \text{right} \)

\(\text{delete}(q) \)

\(\Delta \)

\(o \)
Kd-Trees:
- Partition trees
- Orthogonal split
- Alternate cutting
dimension $x,y,z,...$

Cells are axis-aligned rectangles (AABB)

Queries?
- Orthogonal range queries
 - Given query rect. (AABB) count/report pts in this rect.
- Other range queries?
 - Circular disks
 - Halfplane

Nearest neighbor queries
- Given query pt, return closest pt in the set
- Find k^{th} closest point
- Find farthest point from q

This Lecture: $O(\sqrt{n})$ time alg.
for orthog. range counting queries in \mathbb{R}^2

General \mathbb{R}^d: $O(n^{1-1/d})$

Rectangle methods for kd-cells:
- Split a cell r by a split pt $s \in r$, along cut dim d
- Left part
- Right part

Kd-Tree Queries

Axis-Aligned Rect $m \mathbb{R}^d$
- Defined by two pts: low, high
- Contains pt $q \in \mathbb{R}^d$ iff
 $\text{low}_i \leq q_i \leq \text{high}_i$

Useful methods:
- Let r,c - Rectangle q - Point
- r contains q
- r contains c
- r is disjoint from c

General \mathbb{R}^d: $O(n^{1-1/d})$
Ortho. Range Query

- Assume: Each node p stores:
 - p.pt: splitting point
 - p.cutDim: cutting dim
 - p.size: no. of pts in p's subtree
- Tree stores ptr. to root and bounding box for all pts.
- Recursive helper stores current node p + p's cell.

Cases:
- p == null → fell out of tree → 0
- Query rect is disjoint from p's cell → return 0
 → no point of p contributes to answer
- Query rect contains p's cell → return p.size
 → every point of p's subtree contributes to answer
- Otherwise: Rect cell overlap - Recurse on both children

class Rectangle {
 private Point low, high
 public Rect (Point l, Point h)
 " boolean contains(Point p)
 " boolean contains(Rect c)
 " Rect leftPart(int cd, Points)
 " Rect rightPart()
}

Kd-Tree Queries

int rangeCount(Rect R, KDNode p, Rect cell)
if (p == null) return 0 // fell out of tree
else if (R is Disjoint From (cell)) return 0 // overlap
else if (R.contains((cell))) return p.size // take all
else {
 int ct = 0
 if (R.contains(p.pt)) ct++ // p's pt in range
 ct += rangeCount(R, p.left, cell.leftPart(p.cutDim, p.pt))
 ct += rangeCount(R, p.right, cell.rightPart)
 return ct
}
Theorem: Given a balanced kd-tree storing n pts in \(\mathbb{R}^2 \) (using alternating cut dim), orthog. range queries can be answered in \(O(n) \) time.

Analysis: How efficient is our algorithm?
- \(\Rightarrow \) Tricky to analyze
- \(\Rightarrow \) At some nodes we recurse on both children, \(\Rightarrow O(n) \) time?
- \(\Rightarrow \) At some we don't recurse at all!

Solving the Recurrence:
- Macho: Expand it
- Wimpy: Master Thm (CLRS)

Master Thm:
\[
T(n) = aT\left(\frac{n}{b}\right) + \Theta(d) \log_b a
\]

For us: \(a = 2 \)
\[
T(n) = n \log_2 n
\]

Simpler: Extend R's sides to 4 lines+analyze each one.

Lemma: Given a kd-tree (as in Thm above) and horiz. or vert. line \(l \), at most \(O\left(\sqrt{n}\right) \) cells can be stabbed by \(l \).

Proof: w.l.o.g. \(l \) horiz.
- Cases: \(p \) splits vertically
- \(\Rightarrow \) Stab both

Stabbing: 3 cases
- cell is disjoint (easy)
- cell is contained (easy)
- cell partially overlaps or is stabbed by the query range (hard!)

Kd-Tree Queries III

Since tree is balanced a child has half the pts + grandchild has quarter.
Recurrence: \(T(n) = 2 + 2T\left(\frac{n}{4}\right) \)

If we consider 2 consecutive levels of kd-tree, \(l \) stabs at most 2 of 4 cells:
- p splits horizontally
- \(l \) stabs only one...