Linear List ADT:
Stores a sequence of elements \(\langle a_1, a_2, \ldots, a_n \rangle\). Operations:
- \(\text{init()}\) - create an empty list
- \(\text{get}(i)\) - returns \(a_i\)
- \(\text{set}(i, x)\) - sets \(i\)th element to \(x\)
- \(\text{insert}(i, x)\) - inserts \(x\) prior to \(i\)th (moving others back)
- \(\text{delete}(i)\) - deletes \(i\)th item (moving others up)
- \(\text{length()}\) - returns num. of items

Implementations:
Sequential: Store items in an array

Linked allocation: linked list
- Singly: head \(\rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_n \rightarrow \text{null}\)
- Doubly: head \(\rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_n \rightarrow \text{null}\)

Performance varies with implementation

Abstract Data Type (ADT)
- Abstracts the functional elements of a data structure (math) from its implementation (algorithm/programming)

Doubling Reallocation:
When array of size \(n\) overflows
- allocate new array size \(2n\)
- copy old to new
- remove old array

Dynamic Lists + Sequential Allocation: What to do when your array runs out of space?
Deque ("deck"): Can insert or delete from either end

Basic Data Structures I
- ADTs
- Lists, Stacks, Queues
- Sequential Allocation

Stack: All access from one side
- \(\text{push}\) and \(\text{pop}\)

Queue: FIFO list: \(\text{enqueue}\) inserts at tail and \(\text{dequeue}\) deletes from head
Cost model (Actual cost)
- **Cheap**: No reallocation → 1 unit
- **Expensive**: Array of size \(n \) is reallocated to size \(2n \)

Dynamic (Sequential) Allocation
- When we overflow, double
 - **Expensive**: Array of size \(2n \)
 - **Cheap**: No reallocation → 1 unit

Amortized Cost: Starting from an empty structure, suppose that any sequence of \(m \) ops takes time \(T(m) \). The amortized cost is \(T(m)/m \).

Thm: Starting from an empty stack, the amortized cost of our stack operations is at most 5. \([i.e.\ any\ seq.\ of\ m\ ops\ has\ cost\ \leq 5m]\)

Basic Data Structures II
- Amortized analysis of dynamic stack

Charging Argument:
- Each request of push/pop we charge user 5 work tokens
- We use 1 token to pay for the operation + put other 4 in bank account.
- Will show there is enough in bank account to pay actual costs.

Proof:
- Break the full sequence after each reallocation → run

 \[1234567891011121314151617\]
- At start of a run there are \(n+1 \) items in stack and array size is \(2n \)
- There are at least \(n \) ops before the end of run
- During this time we collect at least \(5n \) tokens
 - \(\rightarrow 1 \) for each op
 - \(\rightarrow 4 \) for deposit
 - Next reallocation costs \(4n \), but we have enough saved!
Fixed Increment: Increase by a fixed constant
\[n \rightarrow n + 100 \]

Fixed factor: Increase by a fixed constant factor (not nec. 2)
\[n \rightarrow 5 \cdot n \]

Squaring: Square the size (or some other power)
\[n \rightarrow n^2 \quad \text{or} \quad n \rightarrow n^{1.5} \]

Which of these provide \(O(1) \) amortized cost per operation?

Leave as exercise (Spoiler alert!)
- Fixed increment: no
- Fixed factor: yes
- Squaring: ?? (depends on cost model)

Dynamic Stack:
- Showed doubling \(\Rightarrow \) Amortized \(\Theta(1) \)
- Other strategies?

Basic Data Structures III
- Dynamic Stack - Wrap-up
- Multilists * Sparse Matrices

Basic Data Structures
- Dynamic Stack
- Wrap-up
- Multilists
- Sparse Matrices

Node:
- Idea: Store only non-zero entries linked by row and column

Multilists: Lists of lists

Sparse Matrices:
- An \(n \times m \) matrix has \(n \cdot m \) entries and takes (naively) \(\Theta(n \cdot m) \) space

Sparse matrix: Most entries are zero