Geometric Search:
- Nearest neighbors
- Range searching
- Point Location
- Intersection Search

Multi-Dim vs. 1-dim Search?

Similarities:
- Tree structure
- Balance $O(\log n)$
- Internal nodes - split
- External nodes - data

Differences:
- No (natural) total order
- Need other ways to discriminate and separate
- Tree rotation may not be meaningful

Sofar: 1-dimensional keys
- Multi-dimensional data
- Applications:
 - Spatial databases + maps
 - Robotics + Auton. Systems
 - Vision/Graphics/Games
 - Machine Learning

Partition Trees:
- Tree structure based on hierarchical space partition
- Each node is associated with a region - cell
- Each internal node stores a splitter - subdivides the cell

External nodes store pts.

Point: A d-vector in \mathbb{R}^d, $p = (p_1, \ldots, p_d)$, $p \in \mathbb{R}^d$

Quadtrees & kd-Trees

Representations:
- Scalars: Real numbers for coordinates, etc.
 float
- Points: $p = (p_1, \ldots, p_d)$ in real d-dim space \mathbb{R}^d
- Other geom objects: Built from these

Class Point
```java
float[] coord // coords
Point(int d)
  // coord = new float[d]
int getDim() \rightarrow coord.length
float get(int i) \rightarrow coord[i]
  // others: equality, distance
toString...
```
Quadtree:
- Each internal node stores a point
- Cell is split by horiz. + vertic. lines through point
- Quadtree: (abstractly)
 - Partition trees
 - Cell: Axis-parallel rectangle
 - Splitter: Subdivides cell into four (generally 2^d) subcells

Find/Pt Location:
- Given a query point q, is it in tree, and if not which leaf cell contains it?
- Follow path from root down (generalizing BST find)

Point Quadtree:
- Each internal node stores a point
- Cell is split by horiz. + vertic. lines through point

History: Bentley 1975
- Called it 2-d tree (\mathbb{R}^2)
- In short kd-tree (any dim)
- Where/which direction to split? → next

Quadtree & kd-Trees

kd-Tree: Binary variant of quadtree
- Splitter: Horiz. or vertic. line in 2-d (orthogonal plane ow.)
- Cell: Still AABB

Find/Location:
- Given a query point q, is it in tree, and if not which leaf cell contains it?
- Follow path from root down (generalizing BST find)

Quadtrees - Analysis:
- Numerous variants!
 - PR, PMR, QR, QX, ... see Samet's book
- Popular in 2-d apps
 - In 3-d, octtrees
- Don't scale to high dim
 - Out degree = 2^d

kd-Trees:
- Binary variant of quadtree
- Splitter: Horiz. or vertic. line in 2-d (orthogonal plane ow.)
- Cell: Still AABB

Find/Location:
- Given a query point q, is it in tree, and if not which leaf cell contains it?
- Follow path from root down (generalizing BST find)

Each external node corresponds to cell of final subdivision

Quadtree:
- Each internal node stores a point
- Cell is split by horiz. + vertic. lines through point

kd-Tree: Binary variant of quadtree
- Splitter: Horiz. or vertic. line in 2-d (orthogonal plane ow.)
- Cell: Still AABB

Find/Location:
- Given a query point q, is it in tree, and if not which leaf cell contains it?
- Follow path from root down (generalizing BST find)

Quadtrees - Analysis:
- Numerous variants!
 - PR, PMR, QR, QX, ... see Samet's book
- Popular in 2-d apps
 - In 3-d, octtrees
- Don't scale to high dim
 - Out degree = 2^d

kd-Trees:
- Binary variant of quadtree
- Splitter: Horiz. or vertic. line in 2-d (orthogonal plane ow.)
- Cell: Still AABB

Find/Location:
- Given a query point q, is it in tree, and if not which leaf cell contains it?
- Follow path from root down (generalizing BST find)
Example:

Kd-Tree Node:

```java
class KDNode {
    Point pt; // splitting point
    int cutDim; // cutting coordinate
    KDNode left; // left side
    KDNode right; // right side
}
```

Example:

```java
find(q) calls find(q, root)
```

Analysis: Find runs in time $O(h)$, where h is height of tree.

Theorem: If pts are inserted in random order, expected height is $O(\log n)$

Value:

```
find(Point q, KDNode p) {
    if (p == null) return null;
    else if (q == p.pt) return p.value;
    else if (p.onLeft(q)) return find(q, p.left);
    else return find(q, p.right);
}
```

Quad trees & KD Trees III

How do we choose cutting dim?

- Standard kd-tree: cycle through them (e.g., $d=3$: $1,2,3,1,2,3$...)
 based on tree depth
- Optimized kd-tree: (Bentley)
 - Based on widest dimension of pts in cell.

```
if (q == p.pt) found!
if q[cd] < p.pt[cd] => left
if q[cd] > p.pt[cd] => right
```

```
boolean onLeft(Point q) {return q[cutDim] < pt[cutDim]}
```
KDNode insert(Point pt, KDNode p, int cd) {
 if (p == null) // fell out?
 p = new KDNode(pt, cd)
 // new leaf node
 else if (p.point == pt)
 return p
 // Error! Duplicate key
 else if (p.onLeft(pt))
 p.left = insert(pt, p.left, (cd + 1) % dim)
 else
 p.right = insert(pt, p.right, (cd + 1) % dim)
 return p
}

Kd-Tree Insertion:
(Similar to std. BSTs)
- Descend tree until cutting,
 → find pt → Error: duplicate
 → falling out (Although we draw extended trees, let’s assume standard trees)
 → create new node
 → set cutting dim

Quadtrees & Kd-Trees

Deletion:
- Descend path to leaf
- If found:
 - leaf node → just remove
 - internal node → find replacement
 → copy here
 → recur. delete replacement

This is the hardest part.
See Latex notes.

Rebalance by Rebuilding:
- Rebuild subtrees as with scapegoat trees
- O(log n) amortized
- Find: O(log n) guaranteed.

Example:
insert(3,4)

Analysis:
Runtime: O(h)

Can we balance the tree?
- Rotation does not make sense!!

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

Graft Node insertion: [1 2 3 4 5 6 7]