Decrease-Key
- Given an entry \((x, v)\), decrease the key value from \(x\) to \(y\).
- How to identify the entry?
 - Heaps do not support an efficient way to find keys.
- **Locator:** A special (abstract) object that identifies an entry of the heap.

Heap Review
- A data structure storing key-value pairs.
- Supports (at a minimum)
 - Insert \((\text{Key } x, \text{Value } v)\)
 - Extract-min()
- Example: Binary heap used in Heapsort

Why decrease-key?
- Dijkstra’s algorithm
 - Heap tracks distances to vertices from source
 - \(n\) extract-mins
 - upto \(n^2\) decrease-keys
 - want decrease-key fast!

Locator
- \(r = \text{insert}(x, v)\)
- \(\text{decrease-key}(r, y)\)

History
- 1984: Fibonacci Heaps (Fredman & Tarjan)
 - many variants
 - Complex to analyze
- 2013: Quake Heap (Timothy Chan)
 - Much simpler

Quake Heaps I
- Basic definitions
- Operations

Quake Heap
- Collection of binary trees
- Nodes organized in levels
- All entries are leaves at level 0
- Internal nodes have 1 or 2 children
- Parent stores smaller of child keys
 - null child always on right

Locator
- Heaps are very asymmetrical w.r.t. keys
- Why not just return a pointer to node \((x,v)\)? Private information
 - Locator is a public object (e.g. an inner class of the Heap)
- How about increase-key?
 - Heaps are very asymmetrical w.r.t. keys
cut(Node w): Assuming w has right child—cuts it off as new root

void make-root(Node u)
 u.parent = null
 add u to roots[u.level]

Node trivial-tree(Key x)
 Node u ← new Node(key x, level 0)
 nodeC[t[0]] += 1
 make-root(u)
 return u

Node link(Node u, Node v)
 int lev ← u.level + 1 (≡ v.level + 1)
 if (u.key ≤ v.key)
 w ← new Node(u.key, lev, u, v)
 else
 w ← new Node(v.key, lev, v, u)
 nodeC[t[lev]] += 1
 u.parent ← v.parent ← w
 return w

Basic utilities:

make-root(Node u): Make u a root
trivial-tree(Key x): Create 1-node tree with key x
link(Node u, Node v): Link u + v
- u + v roots on same level

Quake Heaps II
- Utility ops
- Insert
- Decrease-key

void cut(Node w)
 Node v ← w.right
 if (v ≠ null)
 w.right ← null
 make-root(v)

We’ll apply these utilities to implement operations

void decrease-key(Locator r, Key y)
 Node u ← r.get Node()
 Node u.children ← null
 do {
 u.key ← y // update key value
 u.children ← u.parent // go up
 } while (u ≠ null & u.children = u.left)
 if (u ≠ null) cut(u) // cut subtree

Decrease Key:
- Use locator to access leaf
- Follow left-child path to highest ancestor
- Cut (u): Now we are free to change key
- In code, we’ll change up order of ops

Insert: Super lazy! Just make a single node tree

Locator insert(Key x)
 Node u ← new trivial-tree(x)
 return new Locator(x)
Extract-Min:
- Find the root with smallest key (brute force)
- Delete all nodes down to leaf - many trees
- Merge trees together
 - Work bottom-up
 - Merge 2 trees at level \(k \) to form tree at level \(k+1 \)
- Too 'stringy'"? Flatten \text{QUAKE}!

Quake:
for \((k=0,1,2,\ldots, \text{nLevels}-2) \) {
 if (nodeCt[\text{k+1}] \text{ > } 0.75 \times \text{nodeCt}[\text{k}]) {
 // remove all nodes at level \(k+1 \)
 // and higher
 // make all nodes at level \(k \) roots
 }
}

Intuition: Tree becomes "stringy" after many extractions.
- This is evidenced by the fact that node counts do not decrease
- When this happens - we flatten so we can build up later

So far:
- insert + decrease-key - lazy!
- Don't worry about
 - tree balance
 - number of roots
- insert - \(O(1) \) time
- dec-key - \(O(\log n) \) [later: \(O(1) \)]

Finally, return 4
Key extract-min

- Node $u \leftarrow \text{find root (all levels) with smallest key}$
- $\text{key result} \leftarrow u.\text{key}$
- $\text{delete-left-path}(u)$
- remove u from roots $[u.\text{level}]$
- $\text{merge-trees}()$
- $\text{quake}()$
- return result

Extract-min: Recap

- find root with min key
- delete left-chain to leaf
- merge trees
- quake (if needed)
- return result

Faster Decrease-key:

- Each node stores pointer to leaf with key (only one change)
- Each leaf stores highest left chain ancestor (path trace $O(1)$ time)

Decrease-key:

- Locate leaf node - $O(1)$
- Trace path up left-child links
- Cut $O(1)$
- Change key

Quake Heaps IV

- Extract min (cont)
- Faster decrease key

Quake Heaps:

- Locate leaf node - $O(1)$
- Trace path up left-child links
- Cut $O(1)$
- Change key - $O(\text{height}) = O(\log n)$

Insert - $O(1)$
Decrease-key - $O(\log n)$
Extract-min - ??

Clear-all-above (lev) removes all
nodes in levels $lev+1..n\text{levels}-1$ and makes nodes of lev into roots

Times:

- Insert - $O(1)$
- Decrease-key - $O(\log n)$
- Extract-min - ??

Can we do better? $O(1)$?

Will show $O(\log n)$ amortized
Amortized Analysis:
- Can show that extract-min runs in $O(\log n)$ amortized time
- Given any sequence of ops (starting from empty heap) time to do m ops (insert, dec-key, extract-min) is $O(m \cdot \log n)$
 $n = \text{max no. of keys}$

Potential-Based Analysis:
- Each instance of the data structure assigned a potential Ψ
- Low potential \Rightarrow good structure
- High potential \Rightarrow bad structure

Why is Quake Heap efficient?
- insert: $O(1)$ worst case
- decrease-key: $O(1)$ worst case (assuming enhancements)
- extract-min: As bad as $O(n)$ [no. of roots]

Intuition:
- Extract min actual cost is high
 - Tree height $> O(\log n)$
 - Quake will flatten
 - Many more roots than $O(\log n)$
- Merge trees will reduce no. to $O(\log n)$

Potential decrease compensates for high actual cost

Quake Heaps V
- Analysis (Quick + Dirty)

Lemma: Amortized cost of $\text{insert/dec-key} = O(1)$
$\text{extract-min} = O(\log n)$

Quake Heap Potential:
- Let $N = \text{no. of nodes}$
 - $R = \text{no. of roots}$
 - $B = \text{no. of nodes with 1 child (bad nodes)}$

$\Psi = N + 2R + 4B$

Idea: The amortized cost of an operation defined to be $(\text{actual-cost}) + (\text{change in } \Psi)$

Intuition: Expensive ops okay if they improve structure actual = high $\Delta \Psi = \text{negative}$