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Unsupervised Learning

• Discovering hidden structure in data

• What algorithms do we know for 
unsupervised learning?
– K-Means Clustering

• Today:  how can we learn better 
representations of our data points?



Dimensionality Reduction

• Goal: extract hidden lower-dimensional 
structure from high dimensional datasets

• Why?
– To visualize data more easily
– To remove noise in data
– To lower resource requirements for 

storing/processing data
– To improve classification/clustering



• Linear algebra review:
–Matrix decomposition with eigenvectors and 

eigenvalues



Principal Component Analysis

• Goal: Find a projection of the data onto 
directions that maximize variance of the 
original data set
– Intuition: those are directions in which most 

information is encoded

• Definition: Principal Components are 
orthogonal directions that capture most of 
the variance in the data



PCA: finding principal 
components

• 1st PC
– Projection of data points along 1st PC 

discriminates data most along any one 
direction

• 2nd PC
– next orthogonal direction of greatest 

variability
• And so on…



Examples of data points in D dimensional 
space that can be effectively represented in 
a d-dimensional subspace (d < D)



PCA: notation
• Data points
– Represented by matrix X of size NxD
– Let’s assume data is centered

• Principal components are d vectors:  𝑣!, 𝑣", … 𝑣#
𝑣!. 𝑣" = 0, 𝑖 ≠ 𝑗 and 𝑣$ . 𝑣$ = 1

• The sample variance data projected on vector v 
is ∑!"#$ (𝑥!

%𝑣)& = 𝑋𝑣 % 𝑋𝑣



PCA formally

• Finding vector that maximizes sample 
variance of projected data:

𝑎𝑟𝑔𝑚𝑎𝑥' 𝑣%𝑋% 𝑋𝑣 such that 𝑣%𝑣 = 1

• A constrained optimization problem
§ Lagrangian folds constraint into objective: 
𝑎𝑟𝑔𝑚𝑎𝑥% 𝑣&𝑋& 𝑋𝑣 − 𝜆(𝑣&𝑣 − 1)

§ Solutions are vectors v such that 𝑋& 𝑋𝑣 = 𝜆𝑣
§ i.e. eigenvectors of 𝑋# 𝑋(sample covariance matrix)



PCA formally
• The eigenvalue 𝜆 denotes the amount of variability 

captured along dimension 𝑣
– Sample variance of projection 𝑣&𝑋& 𝑋𝑣 = 𝜆

• If we rank eigenvalues from large to small
– The 1st PC is the eigenvector of 𝑋& 𝑋 associated 

with largest eigenvalue
– The 2nd PC is the eigenvector of 𝑋& 𝑋 associated 

with 2nd largest eigenvalue
– …



Alternative interpretation of PCA

• PCA finds vectors v such that projection on 
to these vectors minimizes reconstruction 
error



Resulting PCA algorithm



How to choose the 
hyperparameter K?

• i.e. the number of dimensions

• We can ignore the components of smaller 
significance



An example: Eigenfaces



PCA pros and cons

• Pros
– Eigenvector method
– No tuning of the parameters
– No local optima

• Cons
– Only based on covariance (2nd order statistics)
– Limited to linear projections



What you should know

• Principal Components Analysis

– Goal: Find a projection of the data onto 
directions that maximize variance of the 
original data set

– PCA optimization objectives and resulting 
algorithm

–Why this is useful!


