Kernels

CMSC 422 SOHEIL FEIZI <u>sfeizi@cs.umd.edu</u>

Slides adapted from MARINE CARPUAT

Today's topics

• Kernel methods

• "Kernelizing" the perceptron

Beyond linear classification

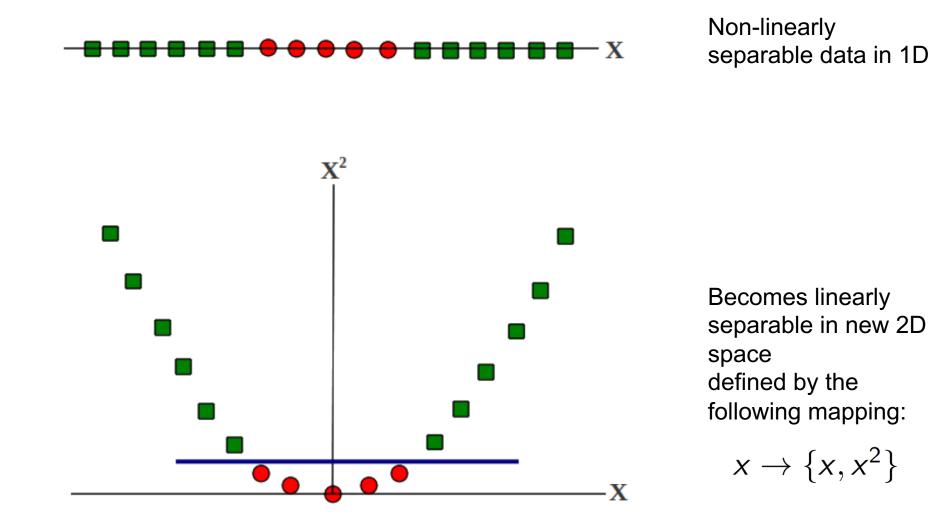
- Problem: linear classifiers
 - Easy to implement and easy to optimize
 - But limited to linear decision boundaries
- What can we do about it?
 - Neural networks
 - Very expressive but harder to optimize (nonconvex objective)
 - Today: Kernels

Kernel Methods

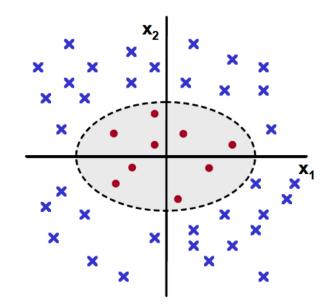
 Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

- How?
 - By mapping data to higher dimensions where it exhibits linear patterns

Classifying non-linearly separable data with a linear classifier: examples



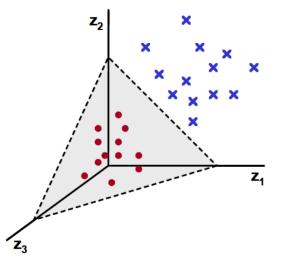
Classifying non-linearly separable data with a linear classifier: examples



Non-linearly separable data in 2D

Becomes linearly separable in the 3D space defined by the following transformation:

$$\mathbf{x} = \{x_1, x_2\} \rightarrow \mathbf{z} = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$



Defining feature mappings

- Map an original feature vector $x = \langle x_1, x_2, x_3, \dots, x_D \rangle$ to an expanded version $\phi(x)$
- Example: quadratic feature mapping represents feature combinations

$$\phi(\mathbf{x}) = \langle 1, 2x_1, 2x_2, 2x_3, \dots, 2x_D, \\ x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_D, \\ x_2 x_1, x_2^2, x_2 x_3, \dots, x_2 x_D, \\ x_3 x_1, x_3 x_2, x_3^2, \dots, x_2 x_D, \\ \dots, \\ x_D x_1, x_D x_2, x_D x_3, \dots, x_D^2 \rangle$$

Feature Mappings

 Pros: can help turn non-linear classification problem into linear problem

- Cons: "feature explosion" creates issues when training linear classifier in new feature space
 - More computationally expensive to train
 - More training examples needed to avoid overfitting

Kernel Methods

 Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

- How?
 - By mapping data to higher dimensions where it exhibits linear patterns
 - By rewriting linear models so that the mapping never needs to be explicitly computed

The Kernel Trick

- Rewrite learning algorithms so they only depend on **dot products between two examples**
- Replace dot product φ(x)^Tφ(z)
 by kernel function k(x, z)
 which computes the dot product implicitly

Example of Kernel function

Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$

Let's assume we are given a function k (kernel) that takes as inputs **x** and **z**

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^{2}$$

= $(x_{1}z_{1} + x_{2}z_{2})^{2}$
= $x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}x_{2}z_{1}z_{2}$
= $(x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})^{\top}(z_{1}^{2}, \sqrt{2}z_{1}z_{2}, z_{2}^{2})$
= $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$

The above k implicitly defines a mapping ϕ to a higher dimensional space $\phi(\mathbf{x}) = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$

Another example of Kernel Function (from CIML)

$$\phi(\mathbf{x}) = \langle 1, 2x_1, 2x_2, 2x_3, \dots, 2x_D, \\ x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_D, \\ x_2 x_1, x_2^2, x_2 x_3, \dots, x_2 x_D, \\ x_3 x_1, x_3 x_2, x_3^2, \dots, x_2 x_D, \end{cases}$$

 $x_D x_1, x_D x_2, x_D x_3, \ldots, x_D^2 \rangle$

...,

What is the function k(x,z) that can implicitly compute the dot product $\phi(x) \cdot \phi(z)$?

$$\begin{aligned} \phi(\mathbf{x}) \cdot \phi(\mathbf{z}) &= 1 + x_1 z_1 + x_2 z_2 + \dots + x_D z_D + x_1^2 z_1^2 + \dots + x_1 x_D z_1 z_D + \\ & \dots + x_D x_1 z_D z_1 + x_D x_2 z_D z_2 + \dots + x_D^2 z_D^2 \end{aligned} \tag{9.2} \\ &= 1 + 2 \sum_d x_d z_d + \sum_d \sum_e x_d x_e z_d z_e \end{aligned} \tag{9.3} \\ &= 1 + 2 \mathbf{x} \cdot \mathbf{z} + (\mathbf{x} \cdot \mathbf{z})^2 \end{aligned} \tag{9.4} \\ &= (1 + \mathbf{x} \cdot \mathbf{z})^2 \end{aligned} \tag{9.5}$$

Kernels: Formally defined

Recall: Each kernel k has an associated feature mapping ϕ

 ϕ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")

Kernel $k(\mathbf{x}, \mathbf{z})$ takes two inputs and gives their similarity in \mathcal{F} space

$$egin{array}{lll} \phi & : & \mathcal{X}
ightarrow \mathcal{F} \ k & : & \mathcal{X} imes \mathcal{X}
ightarrow \mathbb{R}, & k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^{ op} \phi(\mathbf{z}) \end{array}$$

 \mathcal{F} needs to be a *vector space* with a *dot product* defined on it Also called a *Hilbert Space*

Kernels: Mercer's condition

- Can *any* function be used as a kernel function?
 - No! it must satisfy Mercer's condition.

For k to be a kernel function

- There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
- The above is true if K is a positive definite function

$$\int d\mathbf{x} \int d\mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z}) > 0$$

For all square integrable functions f

Kernels: Constructing combinations of kernels

Let k_1 , k_2 be two kernel functions then the following are as well

• $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) + k_2(\mathbf{x}, \mathbf{z})$: direct sum

•
$$k(\mathbf{x}, \mathbf{z}) = \alpha k_1(\mathbf{x}, \mathbf{z})$$
: scalar product

• $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z})k_2(\mathbf{x}, \mathbf{z})$: direct product

Commonly Used Kernel Functions

Linear (trivial) Kernel:

 $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$ (mapping function ϕ is identity - no mapping) Quadratic Kernel:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^2$$
 or $(1 + \mathbf{x}^{\top} \mathbf{z})^2$

Polynomial Kernel (of degree d):

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^d$$
 or $(1 + \mathbf{x}^{\top} \mathbf{z})^d$

Radial Basis Function (RBF) Kernel:

$$k(\mathbf{x}, \mathbf{z}) = \exp[-\gamma ||\mathbf{x} - \mathbf{z}||^2]$$

The Kernel Trick

- Rewrite learning algorithms so they only depend on **dot products between two examples**
- Replace dot product φ(x)^Tφ(z)
 by kernel function k(x, z)
 which computes the dot product implicitly

• Naïve approach: let's explicitly train a perceptron in the new feature space

Algorithm 28 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w \leftarrow 0, b \leftarrow 0$ // initialize weights and bias $_{2}$ for iter = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 3: $a \leftarrow \boldsymbol{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}) + b$ // compute activation for this example 4: if $ya \leq o$ then 5: $w \leftarrow w + y \phi(x)$ // update weights 6: $b \leftarrow b + y$ // update bias 7: end if 8: end for q: Can we apply the Kernel trick? 10° end for Not yet, we need to rewrite the algorithm using 11: return w, bdot products between examples

• Perceptron Representer Theorem

"During a run of the perceptron algorithm, the weight vector w can always be represented as a linear combination of the expanded training data"

Proof by induction (in CIML)

 We can use the perceptron representer theorem to compute activations as a **dot product** between examples

$$w \cdot \phi(x) + b = \left(\sum_{n} \alpha_{n} \phi(x_{n})\right) \cdot \phi(x) + b \qquad \text{definition of } w$$

$$= \sum_{n} \alpha_{n} \left[\phi(x_{n}) \cdot \phi(x)\right] + b \qquad \text{dot products are linear}$$

$$(9.7)$$

Algorithm 29 KERNELIZEDPERCEPTRONTRAIN(**D**, *MaxIter*)

1: $\boldsymbol{\alpha} \leftarrow \mathbf{0}, b \leftarrow \mathbf{0}$ $_{2}$ for iter = 1 ... MaxIter do for all $(x_n, y_n) \in \mathbf{D}$ do 3: $a \leftarrow \sum_m \alpha_m \phi(\mathbf{x}_m) \cdot \phi(\mathbf{x}_n) + b$ 4: if $y_n a \leq o$ then 5: $\alpha_n \leftarrow \alpha_n + y_n$ 6: $b \leftarrow b + y$ 7: end if 8: end for 9: 10: end for 11: return α , b

// initialize coefficients and bias

// compute activation for this example

// update coefficients // update bias

• Same training algorithm, but doesn't explicitly refers to weights w anymore only depends on dot products between examples

We can apply the kernel trick!

Discussion

- Other algorithms can be kernelized:
 See CIML for K-means
- Do Kernels address all the downsides of "feature explosion"?
 - Helps reduce computation cost during training
 - But overfitting remains an issue

What you should know

- Kernel functions
 - What they are, why they are useful, how they relate to feature combination
- Kernelized perceptron

– You should be able to derive it and implement it