Class Notes CM SC 426
3D Geometry and Projection

Introduction

One of the main goals of computer vision is to use 2D images to determine theestructur
and position of 3D objects in the world. To do this, we have to discuss geometry. We
need to understand how to represent geometric objects in 3D and 2D, and we need to
understand the relationship between the 3D world and a 2D image. This note will cover
three topics: representation of planes, points and lines; perspective projedtretatba

the 3D and 2D positions of these objects; and intersections of these objects ashgell as t
process of finding lines or planes that include multiple lines and points.

Representation

In this class we will only consider the simplest geometric objects: poims, dind
planes. This is the minimal set of objects that we can consider. Points are tlestsoipl
objects, we must understand lines because light goes in a straight line, and we must
understand planes, because the image is a plane. However, these simplerelgésts a
very important, and much work in vision is done using just this set of objects.

Points: First, we recall that we represent a point by its coordinates in spacpoiiftas

in 2D, we describe it witk andy coordinates. We will describe points using lower case
letters, so we might writp=(x,y). If a point is in 3D we also needza&oordinate, and we
use upper case letters, so we could WRi#€x,y,z).

2D Lines: Lines already become a little more complicated. There are sevemabiva
representing lines, each with their own advantages and disadvantages.

In 2D we can represent a line with a single, linear equation, of the darrby+c=0.
Here,a, b,andc, are constant values that determine the line. A g&inb) is on this
line if the equation is satisfied when we plug in these valuesdndy. We can get a
useful intuition by rewriting this equation in the following way:
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That is, we can create a unit veci@’,b’). Then a point is on a line if the inner product
between the point an@’,b’) is equal to some constant valae, Keeping in mind that
the inner product betwedRr,y) and(a’,b’) measures the distance frqryy)to the origin

in the direction ofa’,b’), we have the following picture.

where a'=




When we describe a line like this, the vedtorb’) will be orthogonal to the line.

Also, it is also useful to recall another way of describing a line, with theiequat
y = mx+b. When we describe a line like thrs, is the slope of the line.

There is still one more way of describing a line. We can write down a recipsathing
any point on a line by starting at one point of the line,(%ay), and then moving some
distancd, in the direction of the line. If we describe the direction of the line with a unit
vector,(u,v), then we can write this down by saying thay)is on the line if it satisfies

the equation:

(6 y)= (%, y5) + ()

Notice that this is really two equations, one forstre®mponent of the point, and one for
they component, and these equations are linear in three unknownandt.

Previously, we had described a line with one linear equation and two unknowns. We can
convert between these two representations by using one equation to eltitimatenve

would obtain one linear equation in two unknowns.

Planes. Before, we consider how to represent a line in 3D, it's useful to look at a 2D
plane in 3D. First, let's take an example. Suppose we want to represent the floor of a
room. We can say that these are all the points that have a height of zero. If weyuse the
coordinate to represent height, we can represent this plane with the equzioNote

that this is a linear equation xpy,andz, althoughx andz don’t happen to actually show

up in the equation, since they points on the floor can have any valuesndz. More
generally, we can describe any plane with a linear equation of the form:
Ax+By+Cz+D=0.



Just as in 2D, we can rewrite this equation by coming up with a unit ve&t&',C’) =
(A,B,C)/||(A,B,C).Then, we can say a poifd,y,z)is on the plane if it satisfies the
equation:

(x, Y, z)- (A,B,C")=D'

whereD’=-D/||(A,B,C)||. That s, a plane is a set of points whose innedyxects with a
specific unit vector are all the same. Or, toipahother way, we get to a point on a
plane by going a distané® in the directionA’,B’,C’) and then going in any direction
orthogonal tqA’,B’,C’) by whatever amount we want. In this c4#e,B’,C’) is the
vector normal to the plane.

Let's look at our equation for the floor=0, from this point of view. This equation can
also be written(x,y,z).(0,1,0)=0.This says that the floor is the set of all pointsoge
distance from the origin, in thedirection, is0.

3D Lines: Now we will consider how to represent a line in 3Dne way to do this is to
note when two planes intersect, they intersectlinea If we want to represent a point as
lying in the intersection of two planes, we can #8&t the point must satisfy two
equations, one for each plane, so that it lieslenbioth planes. So we can represent a line
by saying that a poir{k,y,z)is on a line if it satisfies the equations:

Ax+By+C;z+D, =0 Ax+B,y+C,z+D, =0

A second useful way to represent a line, as wend®D is to give a starting point, and a
direction, indicating that we can reach any pomttte line by going some distance in
that direction. That is, we can write:

(% Y,2) = (X9, Yo, Zp) + (U, v, W)

Here,(Xo0,Y0,20) iS any point on the line, ar(d,v,w)is a unit vector indicating the direction
in which the line extends. Asvaries, the right hand side of the above equatéon
represent the location of any point on the linee #&n note that the above equation is
really three equations, one for each componertepbint, with four unknowns, v, z,
andt. In contrast the first representation expresseseads two equations with three
unknowns.

| nter sections and Linear Combinations

We now launch into a discussion of how to find ititersection of lines and planes, and
how to find the linear space (ie., a line or a p)aiat include several geometric objects
(eg., finding a line that includes two points, gulane that includes three). These
operations are central to many vision tasks, awilVesee. For example, light travels in a
straight line. An image is a plane. If we wankimw where a ray of light will appear in
an image, we must know how to find the intersectiba line and a plane.



I nter secting lines and planes. We have shown how to represent lines and plandsavit
set of linear equations. When we intersect thégects, this means that for any point in
the intersection, all these equations should hdlierefore, we can represent this
intersection simply by listing the equations thalich For example, suppose we want to
intersect a line and a plane. Suppose furthetttiegine is represented by the two
equations: Ax + Byy + Gz + Dy = 0 and Ax + Byy + Gz+ D, = 0, while the plane is
represented by the equatiogx&+ Bsy + Csz + D3 = 0. The intersection of a line and a
plane is the set of points that satisfies all tlokethese equations. One might have the
intuition that a line and a plane intersect inrggka point, so only one point will satisfy
these equations. Or one might note that threardiaguations with three unknowns will
generally have only one solution, which is the En@pint that satisfies these equations.
It is also possible for these equations to haveatation, which is what happens if the
line is parallel to the plane, and never intersécts

Sometimes it is more convenient to do this interseaising the equation for a line:

(x,y,2) = (%,Yo,20) + t(u,v,w). Suppose the equation for the plane that this htersects

is: Ax+By+Cz+D=0. Then we have four equations with four unknownsolees But

these have a nice form, since three of the equagoex, y,andz on one side, and linear
expressions containing no unknowns baoih the other. So we can substitute, and get the
equationA(x+ tu) + B(yot+tv) + C(zo+tw) + D = 0. We can then solve this equation for

t, and substitute this value into our equation lier line to getx,y,z).

As an example, suppose we have a line with thetenqu,y,z) = (1,2,3) + t(1,1,1)and
we want to intersect it with a plane that has tpea¢ion2x+y+2z+1=0. Substituting, we
get:2(t+1)+(t+2)+2(t+3)+1=0. This gives usbt+11=0, t =-11/5. So we then have:
(xy,2z) = (1,2,3)-(11/5,11/5,11/5).

Finding a line containing two points: We may also wish to find the equation for a line
that contains two points. In 2D, we can do thigding the equation for a line,
y=mx+Db, and treatingn andb as the unknowns. Then, for each point we can sutast

in the values ok andy, giving us two equations with the unknownsndb. Notice that
this will work except for the case of a verticald] which cannot be describedyoy mx

+ b, since it has infinite slope. We would need to &fec this case separately.

Here’s another way to get an equation for a lioenftwo points. Suppose we have
pointsp andg. We can writep + t(p-q). Herep serves as an example of a point on the
line, while(p-q)is a vector in the direction of the line. Notetttias works in two or
three dimensions.

Finding a plane containing three points, or a point and aline

Just as two points determine a line, three poietsrchine a plane. There are several
ways of finding the plane from three points. Foample, similar to what we did with a
line, we can write the equation for a plan&Zas AX + BY + D. Then we can use the
(X,Y,Z)values for each point to get a linear equatioA,iB,andD. Notice that this
approach also doesn’t work for some cases, whicmug handle separately.



If we want to form a plane from a point and a lioee way to do this is to just pick two
points from the line, and then use the above method

For those of you who are familiar with the croseerct, we note that given poirfes,

P,, andPs, we can find a vector normal to the plane of theelpoints by takin¢P; -
P1)x(Ps - P1), wherex is the cross-product operation. If we expreskagwith the
equation/AX+BY+CZ+D = Othis gives ugA,B,C). We can use the coordinates of any
of the points to solve fdd. We won’t go into this method in detail, though, dese we
will try to stick with problems in which finding ¢hplane formed by points, or a point and
aline, is easy.

Per spective Projection

We now have the tools that we need to begin toessbvne vision problems. We begin
by describing the process of perspective projectibime key question that we must
address is, given a description of the cameraiposiind the location of a 3D point,
where will this point appear in the image?

With perspective projection, we describe a camenaguafocal point and anmage
plane. We imagine that light travels in a straighe from a scene point towards the
focal point. The location where the light ray nstects the image plane is the image
location for this scene point. In a pinhole caméra focal point is the pinhole, and the
light passes through it on the way to the imageglahich might be a CCD, or film. In
our idealization of a pinhole camera, the imagalia in front of the pinhole, so the
light strikes the image plane before it reacheddhal point. Either way, we can find the
image point by forming a line that includes thergcpoint and the focal point, and
finding where it intersects the image plane. Weehexplained above how to perform
these operations, so this tells us how to findrtiege point corresponding to a scene
point, for a general camera position.

As an example, suppose we have a camera with bforrd at(1,2,3),with an image
plane at thex=2 plane and we wish to find the image produced by a pairihé scene at
the location(9,6,5). We can describe the line that joins the scene poitite focal point
with the equationfx,y,z) = (1,2,3) + 1(8,4,2). x =1 + 8and we wanfind the point
where this intersects the2 plane, (ie., the point on the line that lkas 2). This occurs
when2 =1 + 8t,or whent = 1/8. The point on the line far= 1/8is (2, 2.5, 3.25).



® (0,0,2)

z=1, the image plane

(0,0,0) Focal Point

We will often consider a special camera set-up figeee above) which makes it much
easier to compute the image points produced byesgemmts. This is the case in which
the focal point is at the origin, and the imagenplés thez=f plane, wheré is called the
focal length of the camera. Suppose now we hagceae poinP, with coordinates
(X,Y,Z),which produces an image poipt, p has coordinate&,y), or alternately we can
think of it as a 3D point on the image plane, vatiordinategx,y,f). We notice that there
are two similar triangles, one with cornerg®0,0), (X,Y,Z)and(0,0,Z)(this is the
triangle above that is light gray, including alke tlark gray triangle and its tip) and the
other with corners 40,0,0), (x,y,f)and(0,0,f) (the dark gray triangle)The first of these
triangles is the same as the second one, but dogladactor ofZ/f. This means that the
side of the big triangle with cornef®,0,0)and(X,Y,Z)is the same as the side with
corners af0,0,0)and(x,y,f), but scaled by a factor @ff. This tells us that4/f)(x,y) =
(X,Y) which implies that

x,¥)=f(X/Z, Y/Z).
This is the basic equation of perspective projectio
The vanishing point and the horizon

We can now derive some basic facts about persgegtojection. The first is that any
point in front of the camera will project to a pbin the image plane. The scene point
and the focal point form a line that will interséoé image plane in a single point. When
we say that a point is in front of the camera, weamthat the image plane separates the
scene point and the focal point, so that the legnsent connecting the two points will
intersect the image plane.



If a line is in front of the camera, it will gendyaproject to a line in the image plane.
Every scene point on the line will project into theage along a line connecting it to the
focal point. Collectively, all these projectiondis connect the scene line to the focal
point, forming the plane that includes the scene &nd the focal point. In general, this
plane will intersect the image plane in a line.

There are two special cases to consider, thoug&'ll Wscuss one below. Here we
mention the case in which the scene line inclubdeddcal point. In this case, all lines of
projection that connect a point on the scene bnthe focal point are, in fact, identical to
the scene line. Since all of these lines are idakhthey all intersect the image plane in
the same point. One can visualize this by imagiine is looking at a line end-on, so
that it looks like just a point.

In general, a scene plane can fill the entire ima@een any image point, this point
forms a line with the focal point, which will intezct the scene plane. This point on the
scene plane, then, will project to the image & itniage point.

An interesting special case occurs, though, ifsittene plane is orthogonal to the image
plane. An important example of this is when thengcplane is the ground, and the
camera is pointing in a horizontal direction. V& describe such a situation with a
camera that has a focal point{@t0,0)and an image plane p£1, and with a ground
plane described by=-k. In this case, thg direction is down, anldis the height of the
camera’s focal point above the ground. Now, letissider the projection of a point on
the ground. A point on the ground has coordin@tesk, z) for any arbitrary values of
andz. If the point is in front of the camera, ther 1. Using the equation of projection,
the image of this point will bé&/z, -k/z). This could be any location in the image, except
that—k/zis always negative, so this point must alwaysnaié bottom half of the image.
The image of the plane occupies all points withatiegy coordinates, up to the line0,
which is called the horizon. Of course this acsomith our experience that when we
look at the world in a direction parallel to the@gnd, the ground is always in the bottom
half of the image. It does not fill up the whateage. More generally, similar reasoning
shows that when we look at any plane that is odhagto the image plane, the points in
that plane will fill up half of the image.

There is one last special case, that occurs wiseerae plane is situated so that the focal
point lies in the same plane. In this case, elregythat connects a point in the scene
plane to the focal point lies in this plane. Tpliane intersects the image plane in a line,
so the images of all points in the scene planaltiag a line in the image. This is what
happens, for example, when you look at a sheeapéipend-on, so that it looks like a
thin line.

Now let’'s consider what happens when a scenegingthogonal to the image plane, for

example, a line that lies on the ground plane. cAfedescribe a line on the ground plane
with the equation:

(%Y, 2) = (X9, Yo, Z) +1(u.0,W)



The zero ensures that this point will always stathey=y, plane. If we're talking about
the ground plane, we would generally expgdb be less than 0. We can use the
equations of projection to find the image of a pain this line, which will be:

X, +tu Yy,
z, +tw’ z, +tw

Now, let’s look at what happens to with images @hgs on the line when they get very
far from the camera. If we assume thvat positive, then aisgets very big, the
coordinate of a point on the lin®,+ tw, will also get very big, meaning the point is very
far from the camera. First let’s look at theoordinate of the image of such a point. Itis
equal to(yo/(zo+tw)). Ast gets very big, the denominator gets very big, g/the
numerator stays the same. In the limitt gees to infinity, then, thg coordinate goes to
zero. For thex coordinate, asgoes to infinity Xo andz, become insignificant relative to
tu andtw. Therefore, th& coordinate of the image point goesutw. This means that

the line appears to approach the point on the dofiz/w,0)as it vanishes in the distance.
This point is called theanishing poinof the line.

It is interesting to note that if two lines are gbgl, they have the same vanishing point.
A line will be parallel to the one we describe abdhit has the equation:

(%Y, 2) = (%, Yo, 2) +t(u,0,w)

We describe this line with a starting point thadiierent from the first line (though still
in they=yo plane. But, if the lines are parallel, they musirgthe same direction,
(u,0,w). By the same reasoning as above, the vanishing pbthts line will also be
(u/w,0).

Another line, which is not parallel to these, wgdl in a different direction, and its
vanishing point will have a differemtcoordinate. But notice that all lines in the plane
have vanishing points on the horizon, that is, witQ. Again, this is in line with our
everyday experience. When we look at a long like,a railroad track, that seems to
vanish into the distance, the line seems to riseujpe horizon as it vanishes.

L ocating an image point in a scene

We are patrticularly interested in using our undgerding of perspective to perform the
inverse operation, to locate a point in the scesneguour knowledge of its location in one
or more images.

From oneimage: When we see a point, in only one image, we cannot determine its
exact location. There is a whole line in the wdhdt could have produced the image
point. This is the line that includes the imagepand the focal point. Call this line

If we take any scene poirR, onL, sincel includes both and the focal point, this is the



line of light traveling from thé to the focal point. Sindeintersects the image plane at
p, this will be the image dP. Thereforel, describes exactly the set of points that might
have produceg.

From oneimage when the point ison a known plane: If we have some prior
knowledge of the scene, it is possible that wedstarmine the 3D location of a point
from a single image. In particular, if we now tlaa’re looking at points on a known
plane, such as the ground plane, then a singledrspecifies a line that a particular point
lies on, and this line will intersect this planeagtoint.

As an example, let's suppose that we have a cawitdra focal point af0,0,0), and an
image plane at=1. We are looking at a point that we know is on theugd plane,
y=-10. The point that we are looking at appears in thegierat (3, -5). We can write an
equation that gives us a line that this point niegn, as:(0,0,0)+t(3,-5,1). To intersect
this with they=-10 plane, we must fin@-5t = -10. So,t = 2 and we find that the point is
at(0,0,0)+2(3,-5,1) = (6, -10, 2).

Epipolar Geometry

We will now consider what happens when we haveitaages of a scene. We'll
consider two situations. First, we'll discuss sageeeral facts that are true for any two
camera positions from which the two images mightaken. Second, we’ll consider the
special case of two cameras side by side, in amgement similar to the two eyes of a
person.

The Epipolar Plane and Line: We will consider the geometry of a scene pointas i
appears in two images. First, let's give somenigdns. We’ll suppose we have one
scene point?, and two imaged]l andl2. Let’s call the two focal points of these images
f1 andf2. These three point®, flandf2 form a plane, which we’ll call.

First, let’'s suppose that we see a point in image oalledpl. We know thapl will lie

on a line that connecBandfl. This means thail must be in the plan®. This is
because if two points are in a plafeandfl) then the line that joins them must also be in
this plane. For exactly the same reason, if wePIaea second image, at the pop®,
thenp2 must also be in the plagg The plane, is called theepipolar plane and it
depends only on the camera geometry and the positia single scene poirR,

However, it is important to notice that we can figout what the epipolar plane is even if
we do not know the location &f, provided that we know the camera geometry and we
have seen an image Bfin one image. Three points determine a plane,esoam findP
usingfl, f2,andpl.

Now we get some interesting information if we netibat the plan® will intersect each
of the image planes in a line; after all, two plgenerally intersect in a line. We’'ll call
the line where& intersects the first image plahé, and the line where it intersects the
second image plarie2. LlandL?2 are called thepipolar lines. A final important fact is
thatpl must lie on the liné1, andp2 must lie onL2. To see this, notice thatl is just



the intersection o and the first image plane. Singgis onQ and it's on the first
image planeplis on the intersection of thedel. Similarly, p2 must lie on_2.

This already gives us some very useful informaéibaut the relationship between image
points of the same scene point. First, supposknoe the camera geometry that created
two images. This situation is callstereo Now, suppose we see a poiatin the first
image, giving upl, but we do not know the location Bf We can usél, f2,andplto
determineQ. We can then us@ and the location of the second image plane tahéte
the lineL2. Now we know that the image Bfin the second image2, must lie on this
line,L2. So seeing a point in one image is enough to nad@mn its location in the
second image to a single line.

We can go a bit further. If we observe an imagetpemywhere on the linel, we get
exactly the same epipolar plaiGg, This means that any point in the first image, tiest
onL1, must match a point on the second image that lid2oAnd the reverse is true by
similar reasoning. Sbl andL2 give us two sets of points that can only be mat¢bed
each other. When we know the camera geometryriftdem of matching points in 2D
images can be reduced to the problem of matchinggalong 1D lines.

The Epipole: The epipolar plane depends on the scene pgirstnd different scene
points give rise to different epipolar planes andd. However, the epipolar lines all
have something in common; in general, they allrgget the same image point. This
point is called thepipole To see this, consider the line that goes thrdlighdf2. Call
this lineF. Sincefl andf2 are points on any epipolar plane, no matter whagne point
produces this epipolar plarthis means thdt is on always on the epipolar plarié@/e
will call the point wherd- intersects the second image plagte, This is the epipole in
image 2. For any scene poiagis on the epipolar plane for that scene point,@mthe
image plane, so it is always on the epipolar lilis means that all epipolar lines
intersect ae2.

There is one important special case where the astatements are not true. It is always
possible thaF does not intersect the second image plane, betaexgare parallel. This
means botlr and any epipolar line will lie in the same epipgéane, but they will not
intersect. This can only happerfiis parallel to any epipolar line. If all the epiar

lines are parallel t&, then they must all be parallel to each other, égber the epipolar
lines all intersect at the epipole, or they argaliallel to each other.



Image Plan

Image Planél

Epipolar Plane Q

Focal pointfl =

Focal pointp2

Standard Stereo: So far we have discussed the general case of tagasaken wiun
any camera positions. However, it will often b&wenient to consider the case of two
cameras in a particularly simple position, anal@gmuthe position of our two eyes. We
suppose that the two cameras are side by side fod#h points az=0, andy = 0,
separated only in thedirection. For example, the focal points mighiab¢he locations
(0,0,0)and(T,0,0). In addition to that, we assume that the camerapdarging in thez
direction with the same focal length, so we cawiaesthat they both have the same
image planez = 1. As explained above, all the epipolar lines willgagallel to the line
that joins the focal points, which is tR@xis. This means that all the epipolar lines are
horizontal lines in the two images. If a scenenpappears at the locati¢xl,yl,1)in the
first image, it will appear along the lirye= y1in the second image.

Now, let's suppose we see the scene p&ing both images. Suppose that it appears in
the first image at the locatigrl = (x1, y1, 1).Then the epipolar constraint tells us that it
will appear in the second image at some locgii@n(x2, y1, 1)je., with the samg
coordinate, but a differemtcoordinate. Then we can notice that we have tmdas
triangles, one involvindl, f2, P,and the other witlp1, p2, P.The base of the first
triangle has a width dF, while the second triangle has a widthx@fx1. We will define
thedisparityto be the difference incoordinates caused by depth, that is, @ s(T-x2)
—(0-x1) =T + (x1-x2).Now, the depth of the poin®, that is, itsz coordinate, is given

by the equation:

(z-1)/z = (x2-x)IT
Tz -T =2z(x2-x1)

z(T+x1-x2)=T



z=T/d

That is, when we see a point in two images, itshdepinversely proportional to its
disparity, and proportional to the distance betwibertwo camera centers. So, if a point
has disparity of zero, its depth is infinite. Tigtpoints that are infinitely far away will
appear in the same position in both images.

Rectification

What if our cameras are not in this nice configorg It turns out that we can rectify the
images to produce the images that we would havergdtour cameras were arranged
like this. First, we note that we can just defoug coordinate system so that the focal
point of the first camera is the origin, and sd tha line connecting the focal points is
thex axis, and the second focal point is located atespasition(T,0,0). The only thing

we have to worry about is the possibility that itinage planes are not thel.

However, if we have an image taken with a partictdaal point,f, and image plane, we
can generate a new image that shows the worldesistsea camera with the same focal
point, but a different image plane. Suppose oarera has an image plahend we
want to generate an image with an image planféor any pointp, in J, we can find the
line L that goes througp andf. We intersect. with the original image plang,

obtaining the poing|. The point in the worldP, that created the intensity gties on the
line L, which connectsj to the focal point. If we had taken a picture gdiandJ as our
focal point and image plane, the line connecBrandf would still beL, and it would
intersect] at the poinp. So the same world point that generated the inteasg would
also create the intensity jat So we can create the imageldty transferring the intensity
from g top.



J (the new image plane)

| (the original image plane)



