Assignment 3

Please submit it electronically to ELMS. This assignment is 7% in your final grade. For the simplicity of the grading, the total number of points for the assignment is 70.

Problem 1. The Bernstein-Vazirani problem.

1. (3 points) Suppose $f: \{0, 1\}^n \rightarrow \{0, 1\}$ is a function of the form
 \[f(x) = x_1 s_1 + x_2 s_2 + \cdots + x_n s_n \mod 2 \]
 for some unknown $s \in \{0, 1\}^n$. Given a black box for f, how many classical queries are required to learn s with certainty?

2. (4 points) Prove that for any n-bit string $u \in \{0, 1\}^n$,
 \[\sum_{z \in \{0, 1\}^n} (-1)^{u \cdot z} = \begin{cases} 2^n & \text{if } u = 0 \\ 0 & \text{otherwise} \end{cases} \]
 where 0 denotes the n-bit string $00\ldots 0$.

3. (4 points) Let U_f denote a quantum black box for f, acting as $U_f |x, y\rangle = |x, y \oplus f(x)\rangle$ for any $x \in \{0, 1\}^n$ and $y \in \{0, 1\}$. Show that the output of the following circuit is the state $|s\rangle(\frac{0}{\sqrt{2}} - \frac{1}{\sqrt{2}})$.

4. (1 points) What can you conclude about the quantum query complexity of learning s?

Problem 2. One-out-of-four search. Let $f: \{0, 1\}^2 \rightarrow \{0, 1\}$ be a black-box function taking the value 1 on exactly one input. The goal of the one-out-of-four search problem is to find the unique $(x_1, x_2) \in \{0, 1\}^2$ such that $f(x_1, x_2) = 1$.

1. (2 points) Write the truth tables of the four possible functions f.

2. (3 points) How many classical queries are needed to solve one-out-of-four search?

3. (7 points) Suppose f is given as a quantum black box U_f acting as
 \[|x_1, x_2, y\rangle \xrightarrow{U_f} |x_1, x_2, y \oplus f(x_1, x_2)\rangle. \]
Determine the output of the following quantum circuit for each of the possible black-box functions \(f \):

\[
\begin{array}{c}
|0\rangle \\
|0\rangle \\
|1\rangle \\
\end{array}
\begin{array}{c}
H \\
H \\
H \\
\end{array}
\begin{array}{c}
U_f \\
\end{array}
\]

4. (3 points) Show that the four possible outputs obtained in the previous part are pairwise orthogonal. What can you conclude about the quantum query complexity of one-out-of-four search?

Problem 3. Implementing the square root of a unitary.

1. (3 points) Let \(U \) be a unitary operation with eigenvalues \(\pm 1 \). Let \(P_0 \) be the projection onto the +1 eigenspace of \(U \) and let \(P_1 \) be the projection onto the −1 eigenspace of \(U \). Let \(V = P_0 + i P_1 \). Show that \(V^2 = U \).

2. (3 points) Give a circuit of 1- and 2-qubit gates and controlled-\(U \) gates with the following behavior (where the first register is a single qubit):

\[
|0\rangle|\psi\rangle \rightarrow \begin{cases}
|0\rangle|\psi\rangle & \text{if } U|\psi\rangle = |\psi\rangle \\
|1\rangle|\psi\rangle & \text{if } U|\psi\rangle = -|\psi\rangle.
\end{cases}
\]

3. (4 points) Give a circuit of 1- and 2-qubit gates and controlled-\(U \) gates that implements \(V \). Your circuit may use ancilla qubits that begin and end in the \(|0\rangle \) state.

Problem 4. Determining the "slope" of a linear function over \(\mathbb{Z}_4 \). Let \(\mathbb{Z}_4 = \{0, 1, 2, 3\} \), with arithmetic operations of addition and multiplication defined with respect to modulo 4 arithmetic on this set. Suppose that we are given a black-box computing a linear function \(f : \mathbb{Z}_4 \rightarrow \mathbb{Z}_4 \), which of the form \(f(x) = ax + b \), with unknown coefficients \(a, b \in \mathbb{Z}_4 \) (throughout this question, multiplication and addition mean these operations in modulo 4 arithmetic). Let our goal be to determine the coefficient \(a \) (the "slope" of the function). We will consider the number of quantum and classical queries needed to solve this problem.

Assume that what we are given is a black box for the function \(f \) that is in reversible form in the following sense. For each \(x, y \in \mathbb{Z}_4 \), the black box maps \((x, y)\) to \((x, y + f(x))\) in the classical case; and \(|x\rangle|y\rangle\) to \(|x\rangle|y + f(x)\rangle\) in the quantum case (which is unitary).

Also, note that we can encode the elements of \(\mathbb{Z}_4 \) into 2-bit strings, using the usual representation of integers as a binary strings \((00 = 0, 01 = 1, 10 = 2, 11 = 3)\). With this encoding, we can view \(f \) as a function on 2-bit strings \(f : \{0, 1\}^2 \rightarrow \{0, 1\}^2 \). When referring to the elements of \(\mathbb{Z}_4 \), we use the notation \(\{0, 1, 2, 3\} \) and \(\{00, 01, 10, 11\} \) interchangeably.

1. (5 points) Prove that every classical algorithm for solving this problem must make two queries.

2. (5 points) Consider the 2-qubit unitary operation \(A \) corresponding to "add 1", such that \(A |x\rangle = |x + 1\rangle \) for all \(x \in \mathbb{Z}_4 \). It is easy to check that

\[
A = \begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}.
\]

Let \(|\psi\rangle = \frac{1}{2}(|00\rangle + i|01\rangle + i^2|10\rangle + i^3|11\rangle)\), where \(i = \sqrt{-1} \). Prove that \(A|\psi\rangle = -i|\psi\rangle \).
(3) *(5 points)* Show how to create the state \[
\frac{1}{2}((-i) f(00) |00\rangle + (-i) f(01) |01\rangle + (-i) f(10) |10\rangle + (-i) f(11) |11\rangle)
\] with a single query to \(U_f\). (Hint: you may use the result in part (2) for this.)

(4) *(5 points)* Show how to solve the problem (i.e., determine the coefficient \(a \in \mathbb{Z}_4\)) with a single quantum query to \(f\). (Hint: you may use the result in part (3) for this.)

Problem 5. *Searching for a quantum state.*

Suppose you are given a black box \(U_\phi\) that identifies an unknown quantum state \(|\phi\rangle\) (which may not be a computational basis state). Specifically, \(U_\phi |\phi\rangle = -|\phi\rangle\), and \(U_\phi |\xi\rangle = |\xi\rangle\) for any state \(|\xi\rangle\) satisfying \(\langle \phi | \xi \rangle = 0\).

Consider an algorithm for preparing \(|\phi\rangle\) that starts from some fixed state \(|\psi\rangle\) and repeatedly applies the unitary transformation \(VU_\phi\), where \(V = 2|\psi\rangle \langle \psi| - I\) is a reflection about \(|\psi\rangle\).

Let \(|\phi^\perp\rangle = \frac{e^{-i\lambda} |\psi\rangle - \sin(\theta) |\phi\rangle}{\cos(\theta)}\) denote a state orthogonal to \(|\phi\rangle\) in span\(\{|\phi\rangle, |\psi\rangle\}\), where \(\langle \phi | \psi \rangle = e^{i\lambda} \sin(\theta)\) for some \(\lambda, \theta \in \mathbb{R}\).

1. *(2 points)* Write the initial state \(|\psi\rangle\) in the basis \(\{|\phi\rangle, |\phi^\perp\rangle\}\).
2. *(3 points)* Write \(U_\phi\) and \(V\) as matrices in the basis \(\{|\phi\rangle, |\phi^\perp\rangle\}\).
3. *(3 points)* Let \(k\) be a positive integer. Compute \((VU_\phi)^k\).
4. *(3 points)* Compute \(\langle \phi | (VU_\phi)^k |\psi\rangle\).
5. *(2 points)* Suppose that \(|\langle \phi | \psi \rangle|\) is small. Approximately what value of \(k\) should you choose in order for the algorithm to prepare a state close to \(|\phi\rangle\), up to a global phase? Express your answer in terms of \(|\langle \phi | \psi \rangle|\).