
Course Overview
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

Alan Sussman & Abhinav Bhatele (CMSC416)

About the instructor
• Professor at UMD for ~20 years, research scientist before that

• Research is in high performance parallel and distributed computing

• Recently returned from a rotation at the National Science Foundation as a program
director, in the Office of Advanced Cyberinfrastructure

2

Alan Sussman & Abhinav Bhatele (CMSC416)

Introductions

• Name

• Sophomore/Junior/Senior

• Something interesting/ unique about yourself

• Why this course? (optional)

3

Alan Sussman & Abhinav Bhatele (CMSC416)

This course is

• An introduction to parallel computing

• Upper Level CS Coursework / General Track / Area 1: Systems

• Work expected:

• Four programming assignments

• Four quizzes

• Midterm exam: in class on March 30 (tentative)

• Final exam: on May 19 (10:30AM -12:30PM)

4

Alan Sussman & Abhinav Bhatele (CMSC416)

Course topics
• Introduction to parallel computing (1 week)

• Parallel architectures and networks (1 week)

• Shared memory parallel programming (1 week)

• Distributed memory parallel programming (1 week)

• GPU programming (1 week)

• Parallel algorithms (2 weeks)

• Debugging & Instrumentation (1 week)

• Performance tools (1 week)

• Performance optimizations (1 week)

• Parallel I/O and Networks (1 week)

• Scientific and other applications (1 week)

5

Alan Sussman & Abhinav Bhatele (CMSC416)

Tools we will use for the class

• Syllabus, lecture slides, assignment descriptions on course website:

• http://www.cs.umd.edu/class/spring2023/cmsc416

• Assignment submissions and quizzes on ELMS

• Discussions: Piazza

• piazza.com/umd/spring2023/cmsc416/home

• If you want to send an email, cc both TAs and me

• Put [CMSC416] in the subject line

6

http://www.cs.umd.edu/class/fall2022/cmsc416
http://piazza.com/umd/fall2021/cmsc416cmsc818x

Alan Sussman & Abhinav Bhatele (CMSC416)

Zaratan accounts

• Zaratan is the university compute cluster where you will do the programming
assignments

• The TAs will provide instructions for logging on to zaratan

• Helpful resources:

• https://hpcc.umd.edu/hpcc/help/usage.html

• https://missing.csail.mit.edu

• https://gitlab.cs.umd.edu/mmarsh/quick-refs

7

https://hpcc.umd.edu/hpcc/help/usage.html
https://missing.csail.mit.edu
https://gitlab.cs.umd.edu/mmarsh/quick-refs

Alan Sussman & Abhinav Bhatele (CMSC416)

Excused absence

8

Any student who needs to be excused for an absence from a single lecture, due to a medically
necessitated absence shall make a reasonable attempt to inform the instructor of his/her illness prior to
the class. Upon returning to the class, present the instructor with a self-signed note attesting to the date
of their illness. Each note must contain an acknowledgment by the student that the information provided
is true and correct. Providing false information to University officials is prohibited under Part 9(i) of the
Code of Student Conduct (V-1.00(B) University of Maryland Code of Student Conduct) and may result
in disciplinary action.

Self-documentation may not be used for Major Scheduled Grading Events (midterm and final exams) and
it may only be used for one class meeting during the semester. Any student who needs to be excused for
a prolonged absence (two or more consecutive class meetings), or for a Major Scheduled Grading Event,
must provide written documentation of the illness from the Health Center or from an outside health
care provider. This documentation must verify dates of treatment and indicate the timeframe that the
student was unable to meet academic responsibilities. In addition, it must contain the name and phone
number of the medical service provider to be used if verification is needed. No diagnostic information
will ever be requested.

Alan Sussman & Abhinav Bhatele (CMSC416)

What is parallel computing?

• Serial or sequential computing: doing a task in sequence on a single processor

• Parallel computing: breaking up a task into sub-tasks and doing them in parallel
(concurrently) on a set of processors (often connected by a network)

• Some tasks do not need any communication: embarrassingly/pleasingly parallel

9

Alan Sussman & Abhinav Bhatele (CMSC416)

What is parallel computing?
• Does it include:

• Grid computing

• Distributed computing

• Cloud computing

• Does it include:

• Superscalar processors

• Vector processors

• Accelerators (GPUs, FPGAs)

10

Alan Sussman & Abhinav Bhatele (CMSC416)

The need for parallel computing or HPC

11

https://www.nature.com/articles/nature21414

Drug discovery Weather forecasting

https://www.ncl.ucar.edu/Applications/wrf.shtml

Study of the universe

https://www.nas.nasa.gov/SC14/demos/demo27.html

HPC stands for High Performance Computing

Alan Sussman & Abhinav Bhatele (CMSC416)

Why do we need parallelism?

• Make some science simulations feasible in the lifetime of humans

• Either due to speed or memory requirements

• Provide answers in realtime or near realtime

• Overall, 2 main reasons

• To structure your program so parts run concurrently

• To achieve the performance you need for your application, which can’t be obtained from a single
processor/core (and its associated memory)

12

Alan Sussman & Abhinav Bhatele (CMSC416)

Large supercomputers
• Top500 list: https://www.top500.org/lists/top500/2022/11/

13

https://www.olcf.ornl.gov/frontier/

Alan Sussman & Abhinav Bhatele (CMSC416)

Parallel architecture

• A set of nodes or processing elements connected by a network.

14

https://computing.llnl.gov/tutorials/parallel_comp

Alan Sussman & Abhinav Bhatele (CMSC416)

Interconnection networks

• Different topologies for connecting nodes together

• Used in the past: torus, hypercube

• More popular currently: fat-tree, dragonfly

15

Torus Fat-tree Dragonfly

Alan Sussman & Abhinav Bhatele (CMSC416)

I/O sub-system / Parallel file system

• Home directories and scratch space typically on a parallel file system

• Mounted on all login and compute nodes

16

http://wiki.lustre.org/Introduction_to_Lustre

Alan Sussman & Abhinav Bhatele (CMSC416)

System software: models and runtimes
• Parallel programming model

• Parallelism is achieved through language constructs or by making calls to a
library and the execution model depends on the language/library used.

• Parallel runtime [system]:

• Implements the parallel execution model

• Shared memory/address-space

• Pthreads, OpenMP, PGAS

• Distributed memory

• MPI, Charm

17

User code

Parallel runtime

Communication library

Operating system

Terminology and Definitions

Introduction to Parallel Computing (CMSC416)

Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• Course ELMS site has been published

• First announcement includes how to sign up for Piazza (need an access code now) – please sign up!

• Office hours will start next week, for both the TAs and me

• Will be posted on class home web page

• Both in-person and online hours

Alan Sussman & Abhinav Bhatele (CMSC416)

Cores, sockets, nodes
• Core: a single execution unit that has

a private L1 cache and can execute
instructions independently

• Processor: several cores on a single
Integrated Circuit (IC) or chip are
called a multi-core processor

• Socket: physical connector into which
an IC/chip or processor is inserted.

• Node: a packaging of sockets -
motherboard or printed circuit board
(PCB) that has multiple sockets

20

https://hpc-wiki.info/hpc/HPC-Dictionary

Alan Sussman & Abhinav Bhatele (CMSC416)

Rackmount servers

21

Alan Sussman & Abhinav Bhatele (CMSC416)

Rackmount server motherboard

22

https://www.anandtech.com/show/15924/chenbro-announces-rb13804-dual-socket-1u-xeon-4-bay-hpc-barebones-server https://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested

Alan Sussman & Abhinav Bhatele (CMSC416)

Job scheduling
• HPC (and clusters) systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

23

Job Queue

#Nodes
Requested

Time
Requested

128 30 mins

64 24 hours

56 6 hours

192 12 hours

… …

… …

1
2
3
4
5
6

• Compute nodes: dedicated to each job
(at least part of a node)

• Network, filesystem: shared by all jobs

Alan Sussman & Abhinav Bhatele (CMSC416)

Compute nodes vs. login nodes

• Compute nodes: dedicated nodes for running jobs

• Can only be accessed when they have been allocated to a user by the job scheduler

• Login nodes: nodes shared by all users to compile their programs, submit jobs etc.

• Also I/O nodes to act as intermediaries between compute/login nodes and the
parallel I/O system (shared by all compute and login nodes)

24

Alan Sussman & Abhinav Bhatele (CMSC416)

Supercomputers vs. commodity clusters

• Supercomputer refers to a large expensive installation, typically using at least some
custom hardware

• High-speed interconnect

• IBM Blue Gene, Cray XT, Cray XC

• But generally defined as the fastest machines currently available

• Cluster refers to a cluster of nodes, typically put together using commodity (off-the-
shelf) hardware

25

Alan Sussman & Abhinav Bhatele (CMSC416)

Serial vs. parallel code

• Thread: a thread or path of execution managed by the OS

• Threads share the same memory address space

• Process: heavy-weight, processes do not share resources such as memory, file
descriptors etc.

• Usually defined as an address space with one or more threads running in it (from CMSC216)

• Serial or sequential code: can only run on a single thread or process

• Parallel code: can be run using one or more threads or processes

26

Alan Sussman & Abhinav Bhatele (CMSC416)

Scaling and scalable

• Scaling: running a parallel program on 1
to n processes

• 1, 2, 3, … , n

• 1, 2, 4, 8, …, n

• Scalable: A program is scalable if its
performance improves when using more
resources

27

0.1

1

10

100

1000

10000

1 4 16 64 256 1K 4K 16K

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

Number of cores

Actual Extrapolation

Alan Sussman & Abhinav Bhatele (CMSC416)

Weak versus strong scaling

• Strong scaling: Fixed total problem size as we run on more resources (processes,
threads)

• Sorting n numbers on 1 process, 2 processes, 4 processes, …

• Weak scaling: Fixed problem size per thread/process but increasing total problem size
as we run on more threads/processes

• Sorting n numbers on 1 process

• 2n numbers on 2 processes

• 4n numbers on 4 processes

28

Alan Sussman & Abhinav Bhatele (CMSC416)

Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on p processes

• Efficiency: Speedup per process

29

Speedup =
𝑡!
𝑡"

Ef*iciency =
𝑡!

𝑡"×𝑝
So 1,	if	tp=	

#!
"

Alan Sussman & Abhinav Bhatele (CMSC416)

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

30

Speedup =
1

(1 − 𝑓) + 𝑓/𝑝

Alan Sussman & Abhinav Bhatele (CMSC416)

Amdahl’s law

31

Speedup =
1

(1 − 𝑓) + 𝑓/𝑝

fprintf(stdout,"Process %d of %d is on %s\n",
myid, numprocs, processor_name);

fflush(stdout);

n = 10000; /* default # of rectangles */
if (myid == 0)
startwtime = MPI_Wtime();

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

h = 1.0 / (double) n;
sum = 0.0;
/* A slightly better approach starts from large i and works back */
for (i = myid + 1; i <= n; i += numprocs)
{
x = h * ((double)i - 0.5);
sum += f(x);
}
mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

Speedup =
1

(1 − 0.6) + 0.6/𝑝

Total time on 1 process = 100s
Serial portion = 40s
Portion that can be parallelized = 60s

𝑓 =
60
100 = 0.6

Alan Sussman & Abhinav Bhatele (CMSC416)

Communication and synchronization

• Each process may execute serial code independently for a while

• When data is needed from other (remote) processes, messaging occurs

• Referred to as communication or synchronization or MPI messages

• Intra-node vs. inter-node communication

• Bulk synchronous programs: All processes compute simultaneously, then
synchronize/communicate

• Similar for threads, but replace messages with shared variables, and synchronization
is through locks, semaphores, …

32

Alan Sussman & Abhinav Bhatele (CMSC416)

Different models of parallel computation

• SIMD: Single Instruction Multiple Data

• GPUs and CPU SIMD instructions

• MIMD: Multiple Instruction Multiple Data

• Each thread/process runs different code on different data

• SPMD: Single Program Multiple Data

• Typical in HPC and parallel computing with many threads/processes

• Each thread/process runs the same code on different data

33

