
Designing Parallel Programs
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)



Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements
• Zaratan accounts have been created for everyone

• Some of you will have to activate your TERPConnect account, and should have received an email on how to do that

• ELMS should be visible to everyone now – so far only Announcements

• When emailing me, please cc the TAs also

• Emails are on the class website: https://www.cs.umd.edu/class/spring2023/cmsc416/index.shtml

• Prefix [CMSC416] to your email subject

• Office hours posted on class website – Zoom info for online hours in ELMS

• Assignment 0 will (likely) be posted on Feb. 9 and will be due a week later

• Not graded, 0 points

2



Alan Sussman & Abhinav Bhatele (CMSC416)

Getting started with zaratan

• 380 nodes with AMD "Milan" processors (128 cores/node)

• 20 nodes with four NVIDIA A100 GPUs (in addition to 128 cores/node)

3

ssh username@login.zaratan.umd.edu



Alan Sussman & Abhinav Bhatele (CMSC416)

Writing parallel programs

• Decide the serial algorithm first

• Data: how to distribute data among threads/processes?

• Data locality: assignment of data to specific processes to minimize data movement

• Computation: how to divide work among threads/processes?

• Figure out how often communication will be needed

4



Alan Sussman & Abhinav Bhatele (CMSC416)

Two-dimensional stencil computation

• Commonly found kernel in computational codes

• Heat diffusion, Jacobi method, Gauss-Seidel method

5

𝐴[𝑖, 𝑗] =
𝐴[𝑖, 𝑗] + 𝐴[𝑖 − 1, 𝑗] + 𝐴[𝑖 + 1, 𝑗] + 𝐴[𝑖, 𝑗 − 1] + 𝐴[𝑖, 𝑗 + 1]

5



Alan Sussman & Abhinav Bhatele (CMSC416)

Serial code

6

for(int t=0; t<num_steps; t++) {
...

for(i ...)
for(j ...)

A_new[i, j] = (A[I, j] + A[i-1, j] + A[i+1, j] + A[i, j-1] + A[i, j+1]) * 0.2

// copy contents of A_new into A
...

}



Alan Sussman & Abhinav Bhatele (CMSC416)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

• 2D decomposition

• Divide both rows and columns (2d blocks) 
among processes

7



Alan Sussman & Abhinav Bhatele (CMSC416)

Prefix sum
• Calculate partial sums of elements in array

• Also called a “scan” sometimes

8

pSum[0] = A[0]

for(i=1; i<N; i++) {
pSum[i] = pSum[i-1] + A[i]

}

1 2 3 4 5 6 …

1 3 6 10 15 21 …pSum

A



Alan Sussman & Abhinav Bhatele (CMSC416)

Parallel prefix sum

9

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

2 10 13 18 25 29 30 36

2 10 13 18 23 19 17 18

0 1 2 3 4 5 6 7



Alan Sussman & Abhinav Bhatele (CMSC416)

In practice

• You have N numbers and P processes, N >> P

• Assign a N/P block to each process

• Do calculation for the blocks on each process locally

• Then do parallel algorithm with partial prefix sums

10



Alan Sussman & Abhinav Bhatele (CMSC416)

The n-body problem

11

https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-body-simulation-cuda

• Simulate the motion of celestial objects 
interacting with one another due to 
gravitational forces

• Naive algorithm: O(n2)

• Every body calculates forces pair-wise with every other 
body (particle)



Alan Sussman & Abhinav Bhatele (CMSC416)

Data distribution in n-body problems
• Naive approach: Assign n/p particles to each process

• Other approaches?

12

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve http://charm.cs.uiuc.edu/workshops/charmWorkshop2011/slides/CharmWorkshop2011_apps_ChaNGa.pdf

Space-
filling 

curves

ORB



Alan Sussman & Abhinav Bhatele (CMSC416)

Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it

13

Quad-tree: not all nodes are shown



Alan Sussman & Abhinav Bhatele (CMSC416)

Load balance and grain size

• Load balance: try to balance the amount of work (computation) assigned to different 
threads/ processes

• Bring ratio of maximum to average load as close to 1 as possible

• Secondary consideration: also load balance amount of communication

• Grain size: ratio of computation-to-communication

• Coarse-grained (more computation) vs. fine-grained (more communication)

14




