
Message Passing and MPI
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• If you registered for the course recently, please email me for a zaratan account

• Office hours start this week – see web page for times for TA and me

• Links for Zoom office hours are in an ELMS announcement

• Sign up for Piazza if you have not done so already

• Link is in ELMS

• Assignment 0 will be posted Thursday, and due a week later

• Not graded, but you have to submit through gradescope

2

Alan Sussman & Abhinav Bhatele (CMSC416)

Shared memory architecture

• All processors/cores can access all memory as a single address space

3

https://computing.llnl.gov/tutorials/parallel_comp/#SharedMemory

Uniform Memory Access Non-uniform Memory Access (NUMA)

Alan Sussman & Abhinav Bhatele (CMSC416)

Distributed memory architecture
• Each processor/core only has access to its local memory (e.g., on a node, typically)

• Writes in one processor’s memory have no effect on another processor’s memory

4

Non-uniform Memory Access (NUMA) Distributed memory

Alan Sussman & Abhinav Bhatele (CMSC416)

Programming models

• Shared memory model: All threads have access to all of the memory

• pthreads, OpenMP

• Distributed memory model: Each process has access to its own local memory

• Also sometimes referred to as message passing

• MPI, Charm++

• Hybrid models: Use both shared and distributed memory models together

• MPI+OpenMP, Charm++ (SMP mode)

5

Alan Sussman & Abhinav Bhatele (CMSC416)

Distributed memory programming models
• Each process only has access to its own local memory / address space

• When a process needs data from remote processes, it has to send/receive messages

6

Process 0

Process 1

Time

Process 2

Process 3

Alan Sussman & Abhinav Bhatele (CMSC416)

Message passing
• Each process runs in its own address space

• Access to only its own memory (no shared data)

• Use special functions to exchange data

7

Process 0

Process 1

Time

Alan Sussman & Abhinav Bhatele (CMSC416)

Message passing programs

• A parallel message passing program consists of independent processes

• Processes created by a launch/run script

• (Usually) Each process runs the same executable, but potentially different parts of
the program, and on different data

• Since control flow usually depends on data values

• Often uses SPMD style of programming

8

Alan Sussman & Abhinav Bhatele (CMSC416)

Message passing history
• PVM (Parallel Virtual Machine) was developed in 1989-1993

• Many vendor libraries in 1980’s to mid-90’s, all with somewhat different APIs and
function semantics

• MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released in 1994

• v2.0 - 1997

• v3.0 – 2012

• v4.0 – 2021

• v5.0 under development

9

Alan Sussman & Abhinav Bhatele (CMSC416)

Message Passing Interface (MPI)

• It is an interface standard — defines the operations / functions needed for message
passing

• Implemented by vendors and academics/labs for different platforms

• Meant to be “portable”: ability to run the same code on different platforms without modifications

• Some popular (open source) implementations are MPICH, MVAPICH, OpenMPI

• Several vendors also provide implementations optimized for their products – e.g., Cray/HPE, Intel

10

Alan Sussman & Abhinav Bhatele (CMSC416)

Hello world in MPI

11

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
int rank, size;
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("Hello world! I'm %d of %d\n", rank, size);

MPI_Finalize();
return 0;

}

Alan Sussman & Abhinav Bhatele (CMSC416)

Compiling and running an MPI program with
OpenMPI

• Compiling:

• Running:

12

mpicc -o hello hello.c

mpirun -n 2 ./hello

Alan Sussman & Abhinav Bhatele (CMSC416)

Process creation / destruction

• int MPI_Init(int argc, char **argv)

• Initializes the MPI execution environment

• int MPI_Finalize(void)

• Terminates MPI execution environment

13

Alan Sussman & Abhinav Bhatele (CMSC416)

Process identification

• int MPI_Comm_size(MPI_Comm comm, int *size)

• Determines the size of the group associated with a communicator

• int MPI_Comm_rank(MPI_Comm comm, int *rank)

• Determines the rank (ID) of the calling process in the communicator

• Communicator — a set of processes and a system-defined unique tag

• Default communicator: MPI_COMM_WORLD

14

Alan Sussman & Abhinav Bhatele (CMSC416)

Send a message

15

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

buf: address of send buffer

count: number of elements in send buffer

datatype: datatype of each send buffer element

dest: rank of destination process

tag: message tag

comm: communicator

Alan Sussman & Abhinav Bhatele (CMSC416)

Receive a message

16

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

buf: address of receive buffer

status: status object

count: maximum number of elements in receive buffer

datatype: datatype of each receive buffer element

source: rank of source process

tag: message tag

comm: communicator

Message Passing and MPI
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements
• Again, If you registered for the course recently, please email me for a zaratan account

• Sign up for Piazza if you have not done so already

• Link is in ELMS

• Assignment 0 is posted, and due a week from today

• Not graded, but you have to submit through gradescope

• Quiz 0 is posted in ELMS

• Available to take starting after class today

• Not graded, but due Monday at 5PM

Alan Sussman & Abhinav Bhatele (CMSC416)

Semantics of point-to-point communication
• A receive matches a send if the arguments to the calls are compatible

• Same communicator, same tag, datatypes should be the same (otherwise data won’t be interpreted correctly in the
receiver)

• If a sender sends two messages to a destination, and both match the same receive, the
second message cannot be received if the first is still pending

• “No-overtaking” messages

• Always true when processes are single-threaded

• In other words, two sends from same process to same destination process will arrive in order

• No guarantee of fairness between processes on receive

• Tags (the tag field in a send or receive call) can be used to disambiguate between messages
in case of non-determinism

19

Alan Sussman & Abhinav Bhatele (CMSC416)

Simple send/receive in MPI

20

int main(int argc, char *argv) {
...
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int data;
if (rank == 0) {

data = 7;
MPI_Send(&data, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (rank == 1) {
MPI_Recv(&data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf("Process 1 received data %d from process 0\n", data);

}

...
}

Alan Sussman & Abhinav Bhatele (CMSC416)

Basic MPI_Send and MPI_Recv
• MPI_Send and MPI_Recv routines are blocking

• Only return when the buffer specified in the call can be (re)used

• Send: Returns once sender can reuse the buffer

• Recv: Returns once data from Recv is available in the buffer

21

Process 0

Process 1

Time

MPI_Send

MPI_Recv
Deadlock!

Alan Sussman & Abhinav Bhatele (CMSC416)

Example program

22

int main(int argc, char *argv) {
...
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
...
if (rank % 2 == 0) {

data = rank;
MPI_Send(&data, 1, MPI_INT, rank+1, 0, ...);

} else {
data = rank * 2;
MPI_Recv(&data, 1, MPI_INT, rank-1, 0, ...);

...
printf("Process %d received data %d\n”, data);

}
...

}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

data = 0

data = 0

data = 2

data = 2

Alan Sussman & Abhinav Bhatele (CMSC416)

MPI communicators

• Communicator represents a group or set of processes numbered 0, … , n-1, along
with a unique system-defined tag

• Every program starts with MPI_COMM_WORLD (default communicator)

• Defined by the MPI runtime, this group includes all processes

• Several MPI routines to create new communicators

• MPI_Comm_split

• MPI_Cart_create

• MPI_Group_incl

23

Alan Sussman & Abhinav Bhatele (CMSC416)

MPI datatypes

• Can be a pre-defined one: MPI_INT, MPI_CHAR, MPI_DOUBLE, …

• Derived or user-defined datatypes:

• Array of elements of another datatype

• struct data type to accomodate sending multiple datatypes

24

