Introduction to Parallel Computing (CMSC416)

Message Passing and MPI

Alan Sussman, Department of Computer Science

UNIVERSITY OF

MARYLAND

Announcements

® If you registered for the course recently, please email me for a zaratan account

® Office hours start this week — see web page for times for TA and me

® | inks for Zoom office hours are in an ELMS announcement

® Sign up for Piazza if you have not done so already

® Linkis in ELMS

® Assignment O will be posted Thursday, and due a week later

®* Not graded, but you have to submit through gradescope

;@](DZECP)?\I/}{)%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)
«11{‘;”&0

Shared memory architecture

® All processors/cores can access all memory as a single address space

Bus Interconnect

Uniform Memory Access Non-uniform Memory Access (NUMA)

https://computing.linl.gov/tutorials/parallel _comp/#SharedMemory

JERSIT
&
)

“ DEPARTMENT OF .
1;"Ryw‘@56 COMPUTER SCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)

Distributed memory architecture

® Each processor/core only has access to its local memory (e.g., on a node, typically)

® Writes in one processor’s memory have no effect on another processor’s memory

Bus Interconnect

Non-uniform Memory Access (NUMA) Distributed memory

SAE:* DEPARTMENT OF ,
1:%“@56 COMPUTER SCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)

Programming models

® Shared memory model: All threads have access to all of the memory

® pthreads, OpenMP

Distributed memory model: Each process has access to its own local memory

®* Also sometimes referred to as message passing

°* MPIl, Charm++

Hybrid models: Use both shared and distributed memory models together

* MPI+OpenMP, Charm++ (SMP mode)

SAE® DEPARTMENT OF :
88" COMPUTER SCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)

44444

Distributed memory programming models

® Each process only has access to its own local memory / address space

® When a process needs data from remote processes, it has to send/receive messages

Process 0
Process | '\
Process 2 /‘ .

Process 3

Time

SAE:* DEPARTMENT OF .
1:’%»@56 COMPUTER SCIENCE Alan Sussman & Abhinav Bhatele (CMSC416) 6

Message passing

® Each process runs in its own address space

® Access to only its own memory (no shared data)

® Use special functions to exchange data

Process 0 /

Process |

Time 7 77 SS—> AN _ N

;@](DZECP)?\I/}{)AIAJEE\ER%PCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)
«11{‘;9%0

Message passing programs

® A parallel message passing program consists of independent processes

® Processes created by a launch/run script

® (Usually) Each process runs the same executable, but potentially different parts of
the program, and on different data

® Since control flow usually depends on data values

® Often uses SPMD style of programming

sG> ART T O :
&](DZECP)I\I/}PAL/IJEFER §CIENCE Alan Sussman & Abhinav Bhatele (CMSC416)

44444

Message passing history

® PVM (Parallel Virtual Machine) was developed in 1989-1993

® Many vendor libraries in 1980’s to mid-90’s, all with somewhat different APIs and
function semantics

® MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released in 1994

® v2.0- 1997
® v3.0-2012

* v4.0 - 2021

® v5.0 under development

SAGS* DEPARTMENT OF :
1:74;;956 COMPUTER SCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)

Message Passing Interface (MPI)

® lItis an interface standard — defines the operations / functions needed for message
passing

® Implemented by vendors and academics/labs for different platforms

®* Meant to be “portable”: ability to run the same code on different platforms without modifications

® Some popular (open source) implementations are MPICH, MVAPICH, OpenMPI

® Several vendors also provide implementations optimized for their products — e.g., Cray/HPE, Intel

;@](DZECP)?\I/};%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)
«11{‘;L?§Q

10

Hello world in MPI

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv([]) {
int rank, size;
MPI Init (&argc, &argv):;

MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI COMM WORLD, &size);
printf ("Hello world! I'm %d of %d\n",

MPI Finalize();
return 0;

J

SUr
S °:6 DEPARTMENT OF

44444

rank,

Alan Sussman & Abhinav Bhatele (CMSC416)

size) ;

Compiling and running an MPI program with
OpenMPI

® Compiling:

mplcc -0 hello hello.c

® Running:

mpirun -n 2 ./hello

18

Alan Sussman & Abhinav Bhatele (CMSC416) 12

18

Process creation / destruction

® int MPI Init(int argc, char **argv)
® |nitializes the MPI execution environment
® int MPI Finalize(void)

®* Terminates MPIl execution environment

SAE™ DEPART T O .
Bt 18](D:E(ISI\I/}P%EFER §CIENCE Alan Sussman & Abhinav Bhatele (CMSC416)

Ry1LM

|3

Process identification

® int MPI Comm size(MPI Comm comm, 1int *size)
®* Determines the size of the group associated with a communicator
® int MPI Comm rank(MPI Comm comm, int *rank)

®* Determines the rank (ID) of the calling process in the communicator

® Communicator — a set of processes and a system-defined unique tag

® Default communicator: MPTI COMM WORLD

;@](DZECP)?\I/};%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)
«ugwéo

| 4

Send a message

int MPI Send(const void *buf, 1nt count, MPI Datatype datatype,
int dest, 1nt tag, MPI Comm comm)

buf: address of send buffer

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination process

Ctag: message tag

comm: commuhnicator

N Q DEPARIMEINT OF Alan Sussman & Abhinav Bhatele (CMSC416)

44444

|5

Recelve a message

int MPI Recv (void *buf, int count, MPI Datatype datatype,
source, 1int tag, MPI Comm comm, MPI Status *status)

buf: address of receive buffer

status: status object

count: maximum number of elements in receive buffer
datatype: datatype of each receive buffer element
source: rank of source process

Ctag: message tag

comm: commuhnicator

;@](DZECP)?\I/};%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)
«11{‘;L?§Q

int

|6

Introduction to Parallel Computing (CMSC416)

Message Passing and MPI

Alan Sussman, Department of Computer Science

UNIVERSITY OF

MARYLAND

Announcements

Again, If you registered for the course recently, please email me for a zaratan account

Sign up for Piazza if you have not done so already

® Linkis in ELMS

Assignment O is posted, and due a week from today

®* Not graded, but you have to submit through gradescope

® Quiz 0 is posted in ELMS

® Available to take starting after class today

®* Not graded, but due Monday at 5PM

;@](DZECP)?\I/}{)%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)
«11{‘;”&0

Semantics of point-to-point communication

® A receive matches a send if the arguments to the calls are compatible

® Same communicator, same tag, datatypes should be the same (otherwise data won’t be interpreted correctly in the
receiver)

® If a sender sends two messages to a destination, and both match the same receive, the
second message cannot be received if the first is still pending

®* “No-overtaking” messages
® Always true when processes are single-threaded

® In other words, two sends from same process to same destination process will arrive in order

® No guarantee of fairness between processes on receive

® Tags (the tag field in a send or receive call) can be used to disambiguate between messages
in case of non-determinism

;@ %ES?\I/}{)%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416) 19
‘712“3’&?»%0

Simple send/receive in MPI

int maln(int argc, char *argv) {

MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI COMM WORLD, &size);

int data;
1f (rank == 0) {

ngSI TP
5&@0&
18 56
5.
RyLM

data = 7;
MPI Send(&data, 1, MPI INT, 1, 0, MPI COMM WORLD) ;

else 1f (rank == 1) {

MPI Recv (&data, 1, MPI INT, O, O, MPI COMM WORLD, MPI STATUS IGNORE) ;

printf ("Process 1 received data %d from process 0\n",

ART T O .
](D:ESI\I/}P%EFER §CIENCE Alan Sussman & Abhinav Bhatele (CMSC416)

data) ;

20

Basic MPl Send and MPI Recv

® MPI_Send and MPI_Recv routines are blocking
® Only return when the buffer specified in the call can be (re)used
® Send: Returns once sender can reuse the buffer

® Recv: Returns once data from Recyv is available in the buffer

Process 0 . . ' MPI Send
Deadlock!
Process | ' ' ' MPIL_Recy
Time

;@ %ES?\I/}{)%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416) 2l
‘712“3’&?»%0

Example program

int main(int argc, char *argv)

MPI Comm rank (MPI COMM WORLD,

1f (rank % 2 == 0) {

data = rank;

MPI Send(&data, 1, MPI INT,
} else |

data = rank * 2;

ngSI TP
5‘;@0&
18 56
).
RyLM

MPI Recv(s&data, 1, MPI INT,

printf ("Process %d received

DEPARTMENT OF

COMPUTER SCIENCE

0
{

l
&rank) ;

2
rank+1, O, ...); 3
rank-1, 0, ...); Time

data %d\n”, data);

Alan Sussman & Abhinav Bhatele (CMSC416)

rank =0 data= 0 data=0
rank = 1 data =2 data=0
rank = 2 data = 2 data = 2
rank = 3 data =6 data = 2
22

MPI communicators

® Communicator represents a group or set of processes numbered O, ..., n-1, along
with a unique system-defined tag

® Every program starts with MPI_COMM_ WORLD (default communicator)

®* Defined by the MPI runtime, this group includes all processes

® Several MPI routines to create new communicators
* MPI_Comm_ split
®* MPIl_Cart_ create

®* MPI_Group_incl

;@](DZECP)?\I/}{)%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)
«11{‘;”&0

23

MPI datatypes

® Can be a pre-defined one: MPI_INT, MPI_CHAR, MPI_DOUBLE, ...

® Derived or user-defined datatypes:

® Array of elements of another datatype

® struct data type to accomodate sending multiple datatypes

;@](DZECP)?\I/};%EFEROgCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)
«11{‘;L?§Q

24

%
\h 43
&
UNIVERSITY OF

MARYLAND

