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Announcements

® If you registered for the course recently, please email me for a zaratan account

® Office hours start this week — see web page for times for TA and me

® | inks for Zoom office hours are in an ELMS announcement

® Sign up for Piazza if you have not done so already

® Linkis in ELMS

® Assignment O will be posted Thursday, and due a week later

®* Not graded, but you have to submit through gradescope
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Shared memory architecture

® All processors/cores can access all memory as a single address space

Bus Interconnect

Uniform Memory Access Non-uniform Memory Access (NUMA)

https://computing.linl.gov/tutorials/parallel _comp/#SharedMemory
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Distributed memory architecture

® Each processor/core only has access to its local memory (e.g., on a node, typically)

® Writes in one processor’s memory have no effect on another processor’s memory

Bus Interconnect

Non-uniform Memory Access (NUMA) Distributed memory
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Programming models

® Shared memory model: All threads have access to all of the memory

® pthreads, OpenMP

Distributed memory model: Each process has access to its own local memory

®* Also sometimes referred to as message passing

°* MPIl, Charm++

Hybrid models: Use both shared and distributed memory models together

* MPI+OpenMP, Charm++ (SMP mode)
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Distributed memory programming models

® Each process only has access to its own local memory / address space

® When a process needs data from remote processes, it has to send/receive messages

Process 0
Process | '\
Process 2 /‘ .

Process 3

Time
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Message passing

® Each process runs in its own address space

® Access to only its own memory (no shared data)

® Use special functions to exchange data

Process 0 /

Process |

Time 7 77 SS—> AN _ N
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Message passing programs

® A parallel message passing program consists of independent processes

® Processes created by a launch/run script

® (Usually) Each process runs the same executable, but potentially different parts of
the program, and on different data

® Since control flow usually depends on data values

® Often uses SPMD style of programming
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Message passing history

® PVM (Parallel Virtual Machine) was developed in 1989-1993

® Many vendor libraries in 1980’s to mid-90’s, all with somewhat different APIs and
function semantics

® MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released in 1994

® v2.0- 1997
® v3.0-2012

* v4.0 - 2021

® v5.0 under development
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Message Passing Interface (MPI)

® lItis an interface standard — defines the operations / functions needed for message
passing

® Implemented by vendors and academics/labs for different platforms

®* Meant to be “portable”: ability to run the same code on different platforms without modifications

® Some popular (open source) implementations are MPICH, MVAPICH, OpenMPI

® Several vendors also provide implementations optimized for their products — e.g., Cray/HPE, Intel
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Hello world in MPI

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv([]) {
int rank, size;
MPI Init (&argc, &argv):;

MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI COMM WORLD, &size);
printf ("Hello world! I'm %d of %d\n",

MPI Finalize();
return 0;
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Compiling and running an MPI program with
OpenMPI

® Compiling:

mplcc -0 hello hello.c

® Running:

mpirun -n 2 ./hello
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Process creation / destruction

® int MPI Init( int argc, char **argv )
® |nitializes the MPI execution environment
® int MPI Finalize( void )

®* Terminates MPIl execution environment
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Process identification

® int MPI Comm size( MPI Comm comm, 1int *size )
®* Determines the size of the group associated with a communicator
® int MPI Comm rank( MPI Comm comm, int *rank )

®* Determines the rank (ID) of the calling process in the communicator

® Communicator — a set of processes and a system-defined unique tag

® Default communicator: MPTI COMM WORLD
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Send a message

int MPI Send( const void *buf, 1nt count, MPI Datatype datatype,
int dest, 1nt tag, MPI Comm comm )

buf: address of send buffer

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination process

Ctag: message tag

comm: commuhnicator
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Recelve a message

int MPI Recv ( void *buf, int count, MPI Datatype datatype,
source, 1int tag, MPI Comm comm, MPI Status *status )

buf: address of receive buffer

status: status object

count: maximum number of elements in receive buffer
datatype: datatype of each receive buffer element
source: rank of source process

Ctag: message tag

comm: commuhnicator
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Announcements

Again, If you registered for the course recently, please email me for a zaratan account

Sign up for Piazza if you have not done so already

® Linkis in ELMS

Assignment O is posted, and due a week from today

®* Not graded, but you have to submit through gradescope

® Quiz 0 is posted in ELMS

® Available to take starting after class today

®* Not graded, but due Monday at 5PM
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Semantics of point-to-point communication

® A receive matches a send if the arguments to the calls are compatible

® Same communicator, same tag, datatypes should be the same (otherwise data won’t be interpreted correctly in the
receiver)

® If a sender sends two messages to a destination, and both match the same receive, the
second message cannot be received if the first is still pending

®* “No-overtaking” messages
® Always true when processes are single-threaded

® In other words, two sends from same process to same destination process will arrive in order

® No guarantee of fairness between processes on receive

® Tags (the tag field in a send or receive call) can be used to disambiguate between messages
in case of non-determinism
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Simple send/receive in MPI

int maln(int argc, char *argv) {

MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI COMM WORLD, &size);

int data;
1f (rank == 0) {
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data = 7;
MPI Send(&data, 1, MPI INT, 1, 0, MPI COMM WORLD) ;

else 1f (rank == 1) {

MPI Recv (&data, 1, MPI INT, O, O, MPI COMM WORLD, MPI STATUS IGNORE) ;

printf ("Process 1 received data %d from process 0\n",
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Basic MPl Send and MPI Recv

® MPI_Send and MPI_Recv routines are blocking
® Only return when the buffer specified in the call can be (re)used
® Send: Returns once sender can reuse the buffer

® Recv: Returns once data from Recyv is available in the buffer

Process 0 . . ' MPI Send
Deadlock!
Process | ' ' ' MPIL_Recy
Time
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Example program

int main(int argc, char *argv)

MPI Comm rank (MPI COMM WORLD,

1f (rank % 2 == 0) {

data = rank;

MPI Send(&data, 1, MPI INT,
} else |

data = rank * 2;
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MPI Recv(s&data, 1, MPI INT,

printf ("Process %d received
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&rank) ;

2
rank+1, O, ...); 3
rank-1, 0, ...); Time

data %d\n”, data);
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rank =0 data= 0 data=0
rank = 1 data =2 data=0
rank = 2 data = 2 data = 2
rank = 3 data =6 data = 2
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MPI communicators

® Communicator represents a group or set of processes numbered O, ..., n-1, along
with a unique system-defined tag

® Every program starts with MPI_COMM_ WORLD (default communicator)

®* Defined by the MPI runtime, this group includes all processes

® Several MPI routines to create new communicators
* MPI_Comm_ split
®* MPIl_Cart_ create

®* MPI_Group_incl
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MPI datatypes

® Can be a pre-defined one: MPI_INT, MPI_CHAR, MPI_DOUBLE, ...

® Derived or user-defined datatypes:

® Array of elements of another datatype

® struct data type to accomodate sending multiple datatypes
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