Performance Modeling, Analysis, and Tools

Alan Sussman, Department of Computer Science
Announcements

• Assignment 1 will be posted on Monday
 • Due 2 weeks later, on March 7

• Late submission policy: submit up to one late day for a 20% penalty

• For any other exceptions, you need to ask as early as possible, not on the day of the deadline

• Quiz 1 will be released next Wednesday
 • You will have 24 hours to take it on ELMS
Weak versus strong scaling

• **Strong scaling**: *Fixed total* problem size as we run on more processes
 - Sorting n numbers on 1 process, 2 processes, 4 processes, …

• **Weak scaling**: Fixed problem size per process but *increasing total* problem size as we run on more processes
 - Sorting n numbers on 1 process
 - $2n$ numbers on 2 processes
 - $4n$ numbers on 4 processes
Amdahl’s law

• Speedup is limited by the serial portion of the code
 • Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

\[
\text{Speedup} = \frac{1}{(1 - f) + \frac{f}{p}}
\]
Performance analysis

- Parallel performance of a program might not be what the developer expects
- How do we find performance bottlenecks?
- Performance analysis is the process of studying the performance of parallel code
- Identify why performance might be slow
 - Serial performance
 - Serial bottlenecks when running in parallel
 - Communication overheads
Performance analysis methods

• Analytical techniques: use algebraic formulae
 • In terms of data size (n), number of processes (p)

• Time complexity analysis

• Scalability analysis (Isoefficiency)

• Model performance of various operations
 • Analytical models: LogP, alpha-beta model

• Empirical performance analysis using tools
Parallel prefix sum

\begin{align*}
\begin{array}{cccccccc}
2 & 8 & 3 & 5 & 7 & 4 & 1 & 6 \\
2 & 10 & 11 & 8 & 12 & 11 & 5 & 7 \\
2 & 10 & 13 & 18 & 23 & 19 & 17 & 18 \\
2 & 10 & 13 & 18 & 25 & 29 & 30 & 36 \\
\end{array}
\end{align*}
Parallel prefix sum for $n \gg p$

- Assign n/p elements (block) to each process
- Perform prefix sum on these blocks on each process locally
 - Number of calculations: $\frac{n}{p}$
 - Then do parallel algorithm with partial prefix sums
 - Number of phases: $\log(p)$
 - Total number of calculations: $\log(p) \times \frac{n}{p}$
Modeling communication: LogP model

- Model for communication on an interconnection network

L: latency or delay

o: overhead (processor busy in communication)

g: gap (between successive sends/recvs)

P: number of processors / processes

\[
\frac{L}{g} = \text{bandwidth}
\]
alpha + n * beta model

- Another model for communication

\[T_{\text{comm}} = \alpha + n \times \beta \]

\(\alpha \): latency

\(n \): size of message

\(1/\beta \): bandwidth
Isoefficiency

• Relationship between problem size and number of processors to maintain a certain level of efficiency

• At what rate should we increase problem size with respect to number of processors to keep efficiency constant
Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on p processes

$$\text{Speedup} = \frac{t_1}{t_p}$$

• Efficiency: Speedup per process

$$\text{Efficiency} = \frac{t_1}{t_p \times p}$$
Efficiency in terms of overhead

- Total time spent in all processes = (useful) computation + overhead (extra computation + communication + idle time)

\[p \times t_p = t_1 + t_o \]

Efficiency = \(\frac{t_1}{t_p \times p} = \frac{t_1}{t_1 + t_o} = \frac{1}{1 + \frac{t_o}{t_1}} \)
Isoefficiency function

\[\text{Efficiency} = \frac{1}{1 + \frac{t_o}{t_1}} \]

- Efficiency is constant if \(t_o / t_1 \) is constant (\(K \))

\[t_o = K \times t_1 \]
Isoefficiency analysis

\[
\begin{align*}
\text{1D decomposition:} \\
&\text{Computation: } \sqrt{n} \times \frac{\sqrt{n}}{p} = \frac{n}{p} \\
&\text{Communication: } 2 \times \sqrt{n} \\
&t_0 \times t_1 = \frac{2 \times \sqrt{n}}{\frac{n}{p}} = 2 \times p \\
&\sqrt{n} \times \frac{\sqrt{n}}{p} = \frac{n}{p} \\
&t_0 \times t_1 = \frac{4 \times \sqrt{n}}{\sqrt{p}} = 4 \times \sqrt{p}
\end{align*}
\]
Announcements

• Assignment 1 posted and due Tuesday, March 7
 • Questions?

• Quiz 1 will be released tomorrow, Wed., at 11AM
 • You will have 24 hours to take it on ELMS
Requests for Assignment 1

1. Tar

 • When you tar the directory, make sure it does not contain unnecessary files, such as binary executables.

 • Name the tarball and the directory correctly, following the specified naming format.

 • Often, people tar from their home or scratch directory, which results in an unnecessarily long directory path (which will not be handled by the autograder!). Please tar from the directory with your code and other files, or use the --C flag to tar. E.g., `tar -czvf Oh-Keonwoo-assign0.tar.gz --C ~/scratch/Oh-Keonwoo-assign0/.. Oh-Keonwoo-assign0`

2. Batch scripts

 • Allocate by number of tasks, rather than nodes. Each node on Zaratan has many cores. Also, there is no need to set --ntasks-per-node like in the example script E.g., `#SBATCH --ntasks=4`

 • Make sure to load the modules you need. E.g., `module load openmpi/gnu`

 • Set `OMPI_MCA_mpi_cuda_support` to 0 in your batch script if you do not want to see the warning about CUDA when you run mpi. E.g., `export OMPI_MCA_mpi_cuda_support=0`

3. Makefile

 • Define CC or CXX correctly to the compiler you are using (gcc, g++, mpicc, mpicxx, etc.) E.g., `CXX = mpicxx`
Empirical performance analysis

• Two parts to performance analysis
 • measurement
 • analysis/visualization

• Simplest tool: timers in the code and printf
Using timers

double start, end;
double phase1, phase2, phase3;

start = MPI_Wtime();
 ... phase1 code ...
end = MPI_Wtime();
phase1 = end - start;

start = MPI_Wtime();
 ... phase2 ...
end = MPI_Wtime();
phase2 = end - start;

Phase 1 took 2.45 s

start = MPI_Wtime();
 ... phase3 ...
end = MPI_Wtime();
phase3 = end - start;

Phase 2 took 11.79 s

Phase 3 took 4.37 s
Performance tools

• Tracing tools
 - Capture entire execution trace

• Profiling tools
 - Provide aggregated information
 - Typically use statistical sampling

• Many tools can do both
Metrics recorded

- Counts of function invocations
- Time spent in code
- Number of bytes sent/received
- Hardware counters
- To fix performance problems — we need to connect metrics to source code
Tracing tools

- Record all the events in the program with timestamps, typically via instrumentation
- Events: function calls, MPI events, etc.

Examples of tracing tools

• VampirTrace
• Score-P
• TAU
• Projections
• HPCToolkit
Profiling tools

• Ignore the specific times at which events occurred
• Provide aggregate information about different parts of the code
• Examples:
 • Gprof, perf
 • mpiP
 • HPCToolkit, caliper
• Python tools: cprofile, pyinstrument, scalene

Gprof data in hpctView
Calling contexts, trees, and graphs

- Calling context or call path: Sequence of function invocations leading to the current sample
- Calling context tree (CCT): dynamic prefix tree of all call paths in an execution
- Call graph: merge nodes in a CCT with the same name into a single node but keep caller-callee relationships as arcs
Calling context trees, call graphs, ...

Contextual information
- File
- Line number
- Function name
- Callpath
- Load module
- Process ID
- Thread ID

Performance Metrics
- Time
- Flops
- Cache misses

Calling context tree (CCT)

Call graph
Output of profiling tools

- Flat profile: Listing of all functions with counts and execution times
- Call graph profile
- Calling context tree
Hatchet

- Hatchet enables programmatic analysis of parallel profiles
- Leverages pandas which supports multi-dimensional tabular datasets
- Creates a structured index to enable indexing pandas dataframes by nodes in a graph
- Provides a set of operators to filter, prune and/or aggregate structured data

https://hatchet.readthedocs.io/en/latest/
Pandas and dataframes

- Pandas is an open-source Python library for data analysis
- **Dataframe:** two-dimensional tabular data structure
 - Supports many operations borrowed from SQL databases
 - **MultiIndex** enables working with high-dimensional data in a 2D data structure

<table>
<thead>
<tr>
<th>Rows</th>
<th>Index</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>node</td>
<td>name</td>
</tr>
<tr>
<td>0</td>
<td>{'name': 'main'}</td>
<td>main</td>
</tr>
<tr>
<td>1</td>
<td>{'name': 'physics'}</td>
<td>physics</td>
</tr>
<tr>
<td>2</td>
<td>{'name': 'mpi'}</td>
<td>mpi</td>
</tr>
<tr>
<td>3</td>
<td>{'name': 'psm2'}</td>
<td>psm2</td>
</tr>
<tr>
<td>4</td>
<td>{'name': 'solvers'}</td>
<td>solvers</td>
</tr>
<tr>
<td>5</td>
<td>{'name': 'hypre'}</td>
<td>hypre</td>
</tr>
<tr>
<td>6</td>
<td>{'name': 'mpi'}</td>
<td>mpi</td>
</tr>
<tr>
<td>7</td>
<td>{'name': 'psm2'}</td>
<td>psm2</td>
</tr>
</tbody>
</table>
Central data structure: a *GraphFrame*

- Consists of a structured index graph object and a pandas dataframe
- Graph stores caller-callee relationships
- Dataframe stores all numerical and categorical data
Dataframe operation: filter

```python
filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
```

<table>
<thead>
<tr>
<th>node</th>
<th>name</th>
<th>nid</th>
<th>node</th>
<th>time</th>
<th>time (inc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>main</td>
<td>0</td>
<td>main</td>
<td>40.0</td>
<td>200.0</td>
</tr>
<tr>
<td>physics</td>
<td>physics</td>
<td>1</td>
<td>physics</td>
<td>40.0</td>
<td>60.0</td>
</tr>
<tr>
<td>mpi</td>
<td>mpi</td>
<td>2</td>
<td>mpi</td>
<td>5.0</td>
<td>20.0</td>
</tr>
<tr>
<td>psm2</td>
<td>psm2</td>
<td>3</td>
<td>psm2</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>solvers</td>
<td>solvers</td>
<td>4</td>
<td>solvers</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>hypre</td>
<td>hypre</td>
<td>5</td>
<td>hypre</td>
<td>65.0</td>
<td>65.0</td>
</tr>
<tr>
<td>mpi</td>
<td>mpi</td>
<td>6</td>
<td>mpi</td>
<td>10.0</td>
<td>35.0</td>
</tr>
<tr>
<td>psm2</td>
<td>psm2</td>
<td>7</td>
<td>psm2</td>
<td>25.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>name</th>
<th>nid</th>
<th>node</th>
<th>time</th>
<th>time (inc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>main</td>
<td>0</td>
<td>main</td>
<td>40.0</td>
<td>200.0</td>
</tr>
<tr>
<td>physics</td>
<td>physics</td>
<td>1</td>
<td>physics</td>
<td>40.0</td>
<td>60.0</td>
</tr>
<tr>
<td>psm2</td>
<td>psm2</td>
<td>3</td>
<td>psm2</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>hypre</td>
<td>hypre</td>
<td>5</td>
<td>hypre</td>
<td>65.0</td>
<td>65.0</td>
</tr>
<tr>
<td>psm2</td>
<td>psm2</td>
<td>7</td>
<td>psm2</td>
<td>25.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>
Graph operation: squash

```python
filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
squashed_gf = filtered_gf.squash()
```
Graphframe operation: subtract

gf1 = ht.GraphFrame.from_literal(...)
gf2 = ht.GraphFrame.from_literal(...)
gf2 -= gf1

https://hatchet.readthedocs.io
Visualizing small graphs

```python
print(gf.tree(color=True))
```

```
0.000 foo
 | 5.000 bar
 |   | 5.000 baz
 |   | 10.000 grault
 |   0.000 quux
 |     | 10.000 corge
 |     | 5.000 bar
 |     |   | 5.000 baz
 |     |   | 10.000 grault
 |     |   10.000 grault
 |     |   15.000 garply
 | 0.000 waldo
 |   | 5.000 plugh
 |   | 5.000 xyzy
 |   | 5.000 thud
 |   |   | 5.000 baz
 |   |   15.000 garply
 |   15.000 garply
```

```python
with open("test.dot", "w") as dot_file:
    dot_file.write(gf.to_dot())
```

```python
with open("test.txt", "w") as folded_stack:
    folded_stack.write(gf.to_flamegraph())
```

Flamegraph
Example 1: Generating a flat profile

```python
gf = ht.GraphFrame.from_hpctoolkit('kripke')
gf.drop_index_levels()

grouped = gf.dataframe.groupby('name').sum()
sorted_df = grouped.sort_values(by=['time'], ascending=True)
print(sorted_df)
```

<table>
<thead>
<tr>
<th>name</th>
<th>nid</th>
<th>time</th>
<th>time (inc)</th>
</tr>
</thead>
<tbody>
<tr>
<td><unknown file> [kripke]:0</td>
<td>17234</td>
<td>1.825282e+08</td>
<td>1.825282e+08</td>
</tr>
<tr>
<td>Kernel_3d_DGZ::scattering</td>
<td>60</td>
<td>7.669939e+07</td>
<td>7.896253e+07</td>
</tr>
<tr>
<td>Kernel_3d_DGZ::LTimes</td>
<td>30</td>
<td>5.010499e+07</td>
<td>5.240528e+07</td>
</tr>
<tr>
<td>Kernel_3d_DGZ::LPlusTimes</td>
<td>115</td>
<td>4.947707e+07</td>
<td>5.104498e+07</td>
</tr>
<tr>
<td>Kernel_3d_DGZ::sweep</td>
<td>981</td>
<td>5.018862e+06</td>
<td>5.018862e+06</td>
</tr>
<tr>
<td>memset.S:99</td>
<td>3773</td>
<td>3.168982e+06</td>
<td>3.168982e+06</td>
</tr>
<tr>
<td>memset.S:101</td>
<td>3970</td>
<td>2.120895e+06</td>
<td>2.120895e+06</td>
</tr>
<tr>
<td>Grid_Data:particleEdit</td>
<td>1201</td>
<td>1.131263e+06</td>
<td>1.249157e+06</td>
</tr>
<tr>
<td><unknown file> [libpsm2.so.2.1]:0</td>
<td>324763</td>
<td>9.733415e+05</td>
<td>9.733415e+05</td>
</tr>
<tr>
<td>memset.S:98</td>
<td>3767</td>
<td>6.197776e+05</td>
<td>6.197776e+05</td>
</tr>
</tbody>
</table>
Example 2: Comparing two executions

gf1 = ht.GraphFrame.from_caliper('lulesh-1core.json')
gf2 = ht.GraphFrame.from_caliper('lulesh-27cores.json')

gf2.drop_index_levels()
gf3 = gf2 - gf1

sorted_df = gf3.dataframe.sort_values(by=['time'], ascending=False)
print(sorted_df)

<table>
<thead>
<tr>
<th>node</th>
<th>name</th>
<th>nid</th>
<th>time</th>
<th>time (inc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimelIncrement</td>
<td>TimelIncrement</td>
<td>25.0</td>
<td>8.505048e+06</td>
<td>8.505048e+06</td>
</tr>
<tr>
<td>CalcQForElems</td>
<td>CalcQForElems</td>
<td>16.0</td>
<td>4.455672e+06</td>
<td>5.189453e+06</td>
</tr>
<tr>
<td>CalcHourglassControlForElems</td>
<td>CalcHourglassControlForElems</td>
<td>7.0</td>
<td>3.888798e+06</td>
<td>4.755817e+06</td>
</tr>
<tr>
<td>LagrangeNodal</td>
<td>LagrangeNodal</td>
<td>3.0</td>
<td>1.986046e+06</td>
<td>8.828475e+06</td>
</tr>
<tr>
<td>CalcForceForNodes</td>
<td>CalcForceForNodes</td>
<td>4.0</td>
<td>1.017857e+06</td>
<td>6.842429e+06</td>
</tr>
</tbody>
</table>
```python
datasets = glob.glob('lulesh*.json')
datasets.sort()

dataframes = []
for dataset in datasets:
    gf = ht.GraphFrame.from_caliper(dataset)
    gf.drop_index_levels()

    num_pes = re.match('(.*)-(\d+)(.*)', dataset)
    num_pes = num_pes.group(2)
    gf.dataframe['pes'] = num_pes
    filtered_gf = gf.filter(lambda x: x['pes'] == num_pes)
    dataframes.append(filtered_gf.dataframe)

result = pd.concat(dataframes)
pivot_df = result.pivot(index='pes', columns='name', values='time')
pivot_df.loc[:, :].plot.bar(stacked=True, figsize=(10, 7))
```

Example 3: Scaling study