
Performance Modeling, Analysis, and Tools
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

Alan Sussman & Abhinav Bhatele (CMSC416)

Annoucements

• Assignment 1 will be posted on Monday

• Due 2 weeks later, on March 7

• Late submission policy: submit up to one late day for a 20% penalty

• For any other exceptions, you need to ask as early as possible, not on the day of the
deadline

• Quiz 1 will be released next Wednesday

• You will have 24 hours to take it on ELMS

2

Alan Sussman & Abhinav Bhatele (CMSC416)

Weak versus strong scaling

• Strong scaling: Fixed total problem size as we run on more processes

• Sorting n numbers on 1 process, 2 processes, 4 processes, …

• Weak scaling: Fixed problem size per process but increasing total problem size as we
run on more processes

• Sorting n numbers on 1 process

• 2n numbers on 2 processes

• 4n numbers on 4 processes

3

Alan Sussman & Abhinav Bhatele (CMSC416)

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

4

Speedup =
1

(1 − 𝑓) + 𝑓/𝑝

Alan Sussman & Abhinav Bhatele (CMSC416)

Performance analysis

• Parallel performance of a program might not be what the developer expects

• How do we find performance bottlenecks?

• Performance analysis is the process of studying the performance of parallel code

• Identify why performance might be slow

• Serial performance

• Serial bottlenecks when running in parallel

• Communication overheads

5

Alan Sussman & Abhinav Bhatele (CMSC416)

Performance analysis methods

• Analytical techniques: use algebraic formulae

• In terms of data size (n), number of processes (p)

• Time complexity analysis

• Scalability analysis (Isoefficiency)

• Model performance of various operations

• Analytical models: LogP, alpha-beta model

• Empirical performance analysis using tools

6

Alan Sussman & Abhinav Bhatele (CMSC416)

Parallel prefix sum

7

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

2 10 13 18 25 29 30 36

2 10 13 18 23 19 17 18

Alan Sussman & Abhinav Bhatele (CMSC416)

Parallel prefix sum for n >> p

• Assign n/p elements (block) to each process

• Perform prefix sum on these blocks on each process locally

• Number of calculations:

• Then do parallel algorithm with partial prefix sums

• Number of phases:

• Total number of calculations:

8

𝑛
𝑝

𝑙𝑜𝑔(𝑝)

×
𝑛
𝑝𝑙𝑜𝑔(𝑝)

Alan Sussman & Abhinav Bhatele (CMSC416)

Modeling communication: LogP model

• Model for communication on an interconnection network

9

L: latency or delay

o: overhead (processor busy in
communication)

g: gap (between successive sends/recvs)

P: number of processors / processes
1/g = bandwidth

Alan Sussman & Abhinav Bhatele (CMSC416)

alpha + n * beta model

• Another model for communication

10

𝑇!"## = 𝛼 + 𝑛×𝛽

α: latency

n: size of message

1/β: bandwidth

Alan Sussman & Abhinav Bhatele (CMSC416)

Isoefficiency

• Relationship between problem size and number of processors to maintain a certain
level of efficiency

• At what rate should we increase problem size with respect to number of processors
to keep efficiency constant

11

Alan Sussman & Abhinav Bhatele (CMSC416)

Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on p processes

• Efficiency: Speedup per process

12

Speedup =
𝑡!
𝑡"

Ef7iciency =
𝑡!

𝑡"×𝑝

Alan Sussman & Abhinav Bhatele (CMSC416)

Efficiency in terms of overhead

• Total time spent in all processes = (useful) computation + overhead (extra
computation + communication + idle time)

13

𝑝×𝑡" = 𝑡! + 𝑡#

Ef7iciency =
𝑡!

𝑡"×𝑝
=

𝑡!
𝑡! + 𝑡#

=
1

1 + 𝑡#𝑡!

Alan Sussman & Abhinav Bhatele (CMSC416)

Isoefficiency function

• Efficiency is constant if to / t1 is constant (K)

14

Ef7iciency =
1

1 + 𝑡#𝑡!

𝑡$ = 𝐾×𝑡%

Alan Sussman & Abhinav Bhatele (CMSC416)

Isoefficiency analysis

15

𝑛
𝑝

𝑛

𝑛
𝑝

𝑛
𝑝

• 1D decomposition:

• Computation:

• Communication:

• 2D decomposition:

• Computation:

• Communication

𝑛×
𝑛
𝑝
=
𝑛
𝑝

2× 𝑛

𝑛
𝑝
×

𝑛
𝑝
=
𝑛
𝑝

4×
𝑛
𝑝

𝑡!
𝑡"
=
2× 𝑛
𝑛
𝑝

=
2×𝑝
𝑛

𝑡!
𝑡"
=
4× 𝑛

𝑝
𝑛
𝑝

=
4× 𝑝
𝑛

Performance Modeling, Analysis, and Tools
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

Alan Sussman & Abhinav Bhatele (CMSC416)

Annoucements

• Assignment 1 posted and due Tuesday, March 7

• Questions?

• Quiz 1 will be released tomorrow, Wed., at 11AM

• You will have 24 hours to take it on ELMS

17

Alan Sussman & Abhinav Bhatele (CMSC416)

Requests for Assignment 1
1. Tar

• When you tar the directory, make sure it does not contain unnecessary files, such as binary executables.

• Name the tarball and the directory correctly, following the specified naming format.

• Often, people tar from their home or scratch directory, which results in an unnecessarily long directory path (which will not be handled by the autograder!).
Please tar from the directory with your code and other files, or use the -C flag to tar.
E.g., tar -czvf Oh-Keonwoo-assign0.tar.gz -C ~/scratch/Oh-Keonwoo-assign0/.. Oh-Keonwoo-assign0

2. Batch scripts

• Allocate by number of tasks, rather than nodes. Each node on Zaratan has many cores. Also, there is no need to set --ntasks-per-node like in the example script
E.g., #SBATCH --ntasks=4

• Make sure to load the modules you need. E.g., module load openmpi/gnu

• Set OMPI_MCA_mpi_cuda_support to 0 in your batch script if you do not want to see the warning about CUDA when you run mpi.
E.g., export OMPI_MCA_mpi_cuda_support=0

3. Makefile

• Define CC or CXX correctly to the compiler you are using (gcc, g++, mpicc, mpicxx, etc.)
E.g., CXX = mpicxx

Alan Sussman & Abhinav Bhatele (CMSC416)

Empirical performance analysis

• Two parts to performance analysis

• measurement

• analysis/visualization

• Simplest tool: timers in the code and printf

19

Alan Sussman & Abhinav Bhatele (CMSC416)

Using timers

20

double start, end;
double phase1, phase2, phase3;

start = MPI_Wtime();
... phase1 code ...

end = MPI_Wtime();
phase1 = end - start;

start = MPI_Wtime();
... phase2 ...

end = MPI_Wtime();
phase2 = end - start;

start = MPI_Wtime();
... phase3 ...

end = MPI_Wtime();
phase3 = end - start;

Phase 1 took 2.45 s

Phase 2 took 11.79 s

Phase 3 took 4.37 s

Alan Sussman & Abhinav Bhatele (CMSC416)

Performance tools

• Tracing tools

• Capture entire execution trace

• Profiling tools

• Provide aggregated information

• Typically use statistical sampling

• Many tools can do both

21

Alan Sussman & Abhinav Bhatele (CMSC416)

Metrics recorded

• Counts of function invocations

• Time spent in code

• Number of bytes sent/received

• Hardware counters

• To fix performance problems — we need to connect metrics to source code

22

Alan Sussman & Abhinav Bhatele (CMSC416)

Tracing tools
• Record all the events in the program with timestamps, typically via instrumentation

• Events: function calls, MPI events, etc.

23

Vampir visualization: https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server

https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server

Alan Sussman & Abhinav Bhatele (CMSC416)

Examples of tracing tools

• VampirTrace

• Score-P

• TAU

• Projections

• HPCToolkit

24

Alan Sussman & Abhinav Bhatele (CMSC416)

Profiling tools
• Ignore the specific times at which events

occurred

• Provide aggregate information about
different parts of the code

• Examples:

• Gprof, perf

• mpiP

• HPCToolkit, caliper

• Python tools: cprofile, pyinstrument,
scalene

25

Gprof data in hpctView

Alan Sussman & Abhinav Bhatele (CMSC416)

Calling contexts, trees, and graphs

• Calling context or call path: Sequence of function
invocations leading to the current sample

• Calling context tree (CCT): dynamic prefix tree of all call
paths in an execution

• Call graph: merge nodes in a CCT with the same name into
a single node but keep caller-callee relationships as arcs

26

Alan Sussman & Abhinav Bhatele (CMSC416)

Calling context trees, call graphs, …

27

File
Line number
Function name
Callpath
Load module
Process ID
Thread ID

Contextual information

Time
Flops
Cache misses

Performance Metrics

Calling context tree (CCT) Call graph

Alan Sussman & Abhinav Bhatele (CMSC416)

Output of profiling tools

• Flat profile: Listing of all functions with counts and
execution times

• Call graph profile

• Calling context tree

28

Alan Sussman & Abhinav Bhatele (CMSC416)

Hatchet

• Hatchet enables programmatic analysis of parallel profiles

• Leverages pandas which supports multi-dimensional tabular datasets

• Creates a structured index to enable indexing pandas dataframes by nodes in a graph

• Provides a set of operators to filter, prune and/or aggregate structured data

29

https://hatchet.readthedocs.io/en/latest/

Alan Sussman & Abhinav Bhatele (CMSC416)

Pandas and dataframes

• Pandas is an open-source Python library
for data analysis

• Dataframe: two-dimensional tabular data
structure

• Supports many operations borrowed from SQL
databases

• MultiIndex enables working with high-
dimensional data in a 2D data structure

30

Columns

Rows

Index

Alan Sussman & Abhinav Bhatele (CMSC416)

Central data structure: a GraphFrame

• Consists of a structured index
graph object and a pandas
dataframe

• Graph stores caller-callee
relationships

• Dataframe stores all numerical
and categorical data

31

Alan Sussman & Abhinav Bhatele (CMSC416)

Dataframe operation: filter

32

Alan Sussman & Abhinav Bhatele (CMSC416)

Graph operation: squash

33

filter squash

Alan Sussman & Abhinav Bhatele (CMSC416)

Graphframe operation: subtract

34

— =

https://hatchet.readthedocs.io

https://hatchet.readthedocs.io

Alan Sussman & Abhinav Bhatele (CMSC416)

Visualizing small graphs

35

Flamegraph

Alan Sussman & Abhinav Bhatele (CMSC416)

Example 1: Generating a flat profile

36

Alan Sussman & Abhinav Bhatele (CMSC416)

Example 2: Comparing two executions

37

Alan Sussman & Abhinav Bhatele (CMSC416)

Example 3: Scaling study

38

