
Parallel Algorithms
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)



Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• Assignment 1 is due on March 7 11:59 pm

• Questions?

2



Alan Sussman & Abhinav Bhatele (CMSC416)

Matrix multiplication

3

https://en.wikipedia.org/wiki/Matrix_multiplication

for (i=0; i<M; i++)
for (j=0; j<N; j++)
for (k=0; k<L; k++)
C[i][j] += A[i][k]*B[k][j];

Any performance issues for large arrays?



Alan Sussman & Abhinav Bhatele (CMSC416)

Blocking to improve cache performance
• Create smaller blocks that fit in cache: leads to cache reuse

• C12 = A10 * B02 + A11 * B12 + A12 * B22 + A13 * B32

4



Alan Sussman & Abhinav Bhatele (CMSC416)

Parallel matrix multiply

• Store A and B in a distributed manner

• Communication between processes to get the right sub-matrices to each process

• Each process computes a portion of C

5



Alan Sussman & Abhinav Bhatele (CMSC416)

Cannon’s 2D matrix multiply

• Views processors/processes as arranged in a 2D grid

• Storage requirements are constant and independent of number of processes

• After initial distribution of matrices, only fixed number of intermediate results need to be stored, so each 
matrix is stored exactly once (no replication)

• Leads to Agarwal’s SUMMA (Scalable Universal Matrix Multiplication Algorithm) 
employed in widely used linear algebra libraries for distributed memory

• e.g., ScaLAPACK, PLAPack, etc.



Alan Sussman & Abhinav Bhatele (CMSC416)

Cannon’s 2D matrix multiply

7

Initial skew
by iShift-by-12D process grid



Alan Sussman & Abhinav Bhatele (CMSC416)

Agarwal’s 3D matrix multiply - SUMMA
• Copy A to all i-k planes and B to all j-k planes

8

3D process grid



Alan Sussman & Abhinav Bhatele (CMSC416)

Agarwal’s 3D matrix multiply
• Perform a single matrix multiply to calculate partial C

• Allreduce along i-j planes to calculate final result

9



Alan Sussman & Abhinav Bhatele (CMSC416)

Communication algorithms

• Reduction

• All-to-all

10



Alan Sussman & Abhinav Bhatele (CMSC416)

Types of reduction

• Scalar reduction: every process contributes one number

• Perform some commutative and associative operation

• Vector reduction: every process contributes an array of numbers

11



Alan Sussman & Abhinav Bhatele (CMSC416)

Parallelizing reduction

• Naive algorithm: every process sends to the root

• Spanning tree: organize processes in a k-ary tree

• Start at leaves and send to parents

• Intermediate nodes wait to receive data from all their children

• Number of phases: logkp

12

MPI Reduction Algorithms: https://hcl.ucd.ie/system/files/TJS-Hasanov-2016.pdf

https://hcl.ucd.ie/system/files/TJS-Hasanov-2016.pdf


Alan Sussman & Abhinav Bhatele (CMSC416)

All-to-all
• Each process sends a distinct message to every other process

• Naive algorithm: every process sends the data pair-wise to all other processes

13

https://www.codeproject.com/Articles/896437/A-Gentle-Introduction-to-the-Message-Passing-Inter



Alan Sussman & Abhinav Bhatele (CMSC416)

Virtual topology: 2D mesh

• Phase 1: every process sends to its row neighbors

• Phase 2: every process sends to column neighbors

14



Alan Sussman & Abhinav Bhatele (CMSC416)

Virtual topology: hypercube

• Hypercube is an n-dimensional analog of a square (n=2) and cube (n=3)

• Special case of k-ary d-dimensional mesh

15

https://en.wikipedia.org/wiki/Hypercube




