
CUDA GPU Programming
Alan Sussman (from Daniel Nichols)

Introduction to Parallel Computing (CMSC416)

Announcements

● MPI assignment due last night
● Questions?

● Assignment 2 on Tools posted yesterday
● Questions?

Alan Sussman (from Daniel Nichols) 2

CUDA

● Software ecosystem for NVIDIA GPUs
● Language for programming GPUs

○ C++ language extension
○ *.cu files

● NVCC compiler
> nvcc -o saxpy --generate-code arch=compute_80,code=sm_80 saxpy.cu
> ./saxpy

Alan Sussman (from Daniel Nichols) 3

CUDA Syntax
__global__ void saxpy(float *x, float *y, float alpha) {

int i = threadIdx.x;

y[i] = alpha*x[i] + y[i];

}

int main() {

...

saxpy<<<1, N>>>(x, y, alpha);

...

}

Alan Sussman (from Daniel Nichols) 4

Possible Issues?
__global__ void saxpy(float *x, float *y, float alpha) {

int i = threadIdx.x;

y[i] = alpha*x[i] + y[i];

}

int main() {

...

saxpy<<<1, N>>>(x, y, alpha);

...

}

Alan Sussman (from Daniel Nichols) 5

Possible Issues?
__global__ void saxpy(float *x, float *y, float alpha) {

int i = threadIdx.x;

y[i] = alpha*x[i] + y[i];

}

int main() {

...

saxpy<<<1, N>>>(x, y, alpha);

...

}

What happens when:
- N > 1024?
- N > # device

threads?

Alan Sussman (from Daniel Nichols) 6

Multiple Blocks
__global__ void saxpy(float *x, float *y, float alpha, int N) {

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < N)

y[i] = alpha*x[i] + y[i];

}

...

int threadsPerBlock = 512;

int numBlocks = N/threadsPerBlock + (N % threadsPerBlock != 0);

saxpy<<<numBlocks, threadsPerBlock>>>(x, y, alpha, N);

Alan Sussman (from Daniel Nichols) 7

Striding
__global__ void saxpy(float *x, float *y, float alpha, int N) {

int i0 = blockDim.x * blockIdx.x + threadIdx.x;

int stride = blockDim.x * gridDim.x;

for (int i = i0; i < N; i += stride)

y[i] = alpha*x[i] + y[i];

}

Alan Sussman (from Daniel Nichols) 8

Grid and Block Dimensions

● # of blocks and threads per block can be 3-vectors
● Useful for algorithms with 2d & 3d data layouts

Alan Sussman (from Daniel Nichols) 9

Grid and Block Dimensions
GRID BLOCK

grid
Dim.x

blockD
im.x

THREAD
gridDim.y

gr
id

D
im

.z

blockDim.y

bl
oc

kD
im

.z

Alan Sussman (from Daniel Nichols) 10

Grid and Block Dimensions

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(M/threadsPerBlock.x + (M % threadsPerBlock.x != 0),

N/threadsPerBlock.y + (N % threadsPerBlock.y != 0));

matrixAdd<<<numBlocks, threadsPerBlock>>>(X, Y, alpha, M, N);

Alan Sussman (from Daniel Nichols) 11

Grid and Block Dimensions

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(M/threadsPerBlock.x + (M % threadsPerBlock.x != 0),

N/threadsPerBlock.y + (N % threadsPerBlock.y != 0));

matrixAdd<<<numBlocks, threadsPerBlock>>>(X, Y, alpha, M, N);

Each block is 16x16 threads.

Alan Sussman (from Daniel Nichols) 12

Grid and Block Dimensions

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(M/threadsPerBlock.x + (M % threadsPerBlock.x != 0),

N/threadsPerBlock.y + (N % threadsPerBlock.y != 0));

matrixAdd<<<numBlocks, threadsPerBlock>>>(X, Y, alpha, M, N);

The grid is ⌈M/16⌉ x ⌈N/16⌉ blocks.

Alan Sussman (from Daniel Nichols) 13

Grid and Block Dimensions

__global__ void matrixAdd(float **X, float **Y, float alpha, int M, int N){

int i = blockDim.x * blockIdx.x + threadIdx.x;

int j = blockDim.y * blockIdx.y + threadIdx.y;

if (i < M && j < N)

Y[i][j] = alpha*X[i][j] + Y[i][j];

}

Alan Sussman (from Daniel Nichols) 14

Questions?

Alan Sussman (from Daniel Nichols) 15

Matrix Multiply

● Standard matrix multiply
● How can we parallelize?

for (i=0; i<M; i++)

for (j=0; j<N; j++)

for (k=0; k<P; k++)

C[i][j] += A[i][k]*B[k][j];

Alan Sussman (from Daniel Nichols) 16

Matrix Multiply

● Cij can be computed
independent of other
values of C

● 2-D thread decomposition
● Thread (i, j) computes Cij

Image: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Alan Sussman (from Daniel Nichols) 17

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Matrix Multiply

dim3 threadsPerBlock (BLOCK_SIZE, BLOCK_SIZE);

dim3 numBlocks(M/threadsPerBlock.x + (M%threadsPerBlock.x != 0),

N/threadsPerBlock.y + (N%threadsPerBlock.y != 0));

matmul<<<numBlocks, threadsPerBlock>>>(C, A, B, M, P, N);

● Launch M x N threads
● Thread (i,j) computes Cij

Alan Sussman (from Daniel Nichols) 18

Matrix Multiply
__global__ void matmul(double *C, double *A, double *B, size_t M, size_t P,

size_t N) {

int i = blockDim.x*blockIdx.x + threadIdx.x;

int j = blockDim.y*blockIdx.y + threadIdx.y;

if (i < M && j < N) {

for (int k = 0; k < P; k++) {

C[i*N+j] += A[i*P+k]*B[k*N+j];

}

}

}

Compute Cij

Alan Sussman (from Daniel Nichols) 19

Issues?

Alan Sussman (from Daniel Nichols) 20

Issues?

● Poor data re-use
○ Every value of A & B is

loaded from global memory

Alan Sussman (from Daniel Nichols) 21

Issues?

● Poor data re-use
○ Every value of A & B is

loaded from global memory
○ A is read N times
○ B is read M times

Alan Sussman (from Daniel Nichols) 22

Issues?

● Poor data re-use
○ Every value of A & B is

loaded from global memory
○ A is read N times
○ B is read M times

● How can we improve data re-
use?

Alan Sussman (from Daniel Nichols) 23

CUDA GPU Programming
Alan Sussman (from Daniel Nichols)

Introduction to Parallel Computing (CMSC416)

Announcements

● Assignment 2 on Tools due Thursday, 11:59PM
● Questions?

● No class Thursday, so work on the assignment!
● No office hour on Wednesday for me, office hour on Thursday is on

Zoom instead of in-person

Alan Sussman (from Daniel Nichols) 25

Shared Memory

● Local
○ thread only

● Shared
○ threads in block

● Global
○ all threads

Alan Sussman (from Daniel Nichols) 26

Shared Memory

● __shared__
○ Denotes shared memory

● __syncthreads()
○ Synchronizes all threads in

block

Alan Sussman (from Daniel Nichols) 27

Reversing with Shared Memory
__global__ void reverse(int *vec) {

__shared__ int sharedVec[N];

int idx = threadIdx.x;

int idxReversed = N - idx - 1;

sharedVec[idx] = vec[idx];

__syncthreads();

vec[idx] = sharedVec[idxReversed];

}

Alan Sussman (from Daniel Nichols) 28

Reversing with Shared Memory
__global__ void reverse(int *vec) {

__shared__ int sharedVec[N];

int idx = threadIdx.x;

int idxReversed = N - idx - 1;

sharedVec[idx] = vec[idx];

__syncthreads();

vec[idx] = sharedVec[idxReversed];

}

Allocate N ints in
block.

Alan Sussman (from Daniel Nichols) 29

Reversing with Shared Memory
__global__ void reverse(int *vec) {

__shared__ int sharedVec[N];

int idx = threadIdx.x;

int idxReversed = N - idx - 1;

sharedVec[idx] = vec[idx];

__syncthreads();

vec[idx] = sharedVec[idxReversed];

}

Allocate N ints in
block.

Store into shared mem.
Synchronize.
Load from shared mem.

Alan Sussman (from Daniel Nichols) 30

Matrix Multiply with Shared Memory

● How can we speed up matrix
multiply with shared memory?

Alan Sussman (from Daniel Nichols) 31

Matrix Multiply with Shared Memory

● Data Reuse
○ A is read N times
○ B is read M times

Alan Sussman (from Daniel Nichols) 32

Matrix Multiply with Shared Memory

● Block computation
● Each block computes submatrix

of C
● Save reused values in shared

memory

Image: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Alan Sussman (from Daniel Nichols) 33

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Matrix Multiply with Shared Memory

● Compute C = AB + C
A C

B

M

N

P

P

Alan Sussman (from Daniel Nichols) 34

Matrix Multiply with Shared Memory

● Block (i, j) computes Cij sub
matrix
○ Save A & B submatrices

into shared memory

A C

B

Alan Sussman (from Daniel Nichols) 35

Matrix Multiply with Shared Memory

A C

B

● Block (i, j) computes Cij sub
matrix
○ Save A & B submatrices

into shared memory
○ Accumulate partial dot

product into C

Alan Sussman (from Daniel Nichols) 36

Matrix Multiply with Shared Memory

● Block (i, j) computes Cij sub
matrix
○ Save A & B submatrices

into shared memory
○ Accumulate partial dot

product into C

A C

B

Alan Sussman (from Daniel Nichols) 37

Matrix Multiply with Shared Memory

● Block (i, j) computes Cij sub
matrix
○ Save A & B submatrices

into shared memory
○ Accumulate partial dot

product into C

A C

B

Alan Sussman (from Daniel Nichols) 38

Matrix Multiply with Shared Memory

● A is read N / block_size times
● B is read M / block_size times
● Data reads from global

memory are reduced by
O(block size)

A C

B

M

N

P

P

Reference Implementation:
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/matrixMul/matrixMul.cu

Alan Sussman (from Daniel Nichols) 39

https://github.com/NVIDIA/cuda-samples/blob/master/Samples/matrixMul/matrixMul.cu

How much faster is it?

Algorithm Time* (s)

Simple CPU 170.898

Simple GPU 1.997

Shared Memory 0.091

CuBLAS 0.017

A, B are 2048x2048

* on DeepThought2

Alan Sussman (from Daniel Nichols) 40

Questions?

Alan Sussman (from Daniel Nichols) 41

Profiling GPUs

● HPCToolkit + Hatchet
○ In addition to normal HPCToolkit commands

■ hpcrun -e gpu=nvidia …
■ hpcstruct <measurements_dir>

● NSight
○ NVIDIA profiling suite

Alan Sussman (from Daniel Nichols) 42

NSight

● nsys command to profile
○ nsys profile -t cuda <executable> <args>
○ Outputs .qdrep file

● View profile in NSight GUI
○ nsys-ui report1.qdrep

See https://docs.nvidia.com/nsight-systems/UserGuide/index.html

Alan Sussman (from Daniel Nichols) 43

https://docs.nvidia.com/nsight-systems/UserGuide/index.html

NSight

Image from https://developer.nvidia.com/blog/nvidia-tools-extension-api-nvtx-annotation-tool-for-profiling-code-in-python-and-c-c/

Alan Sussman (from Daniel Nichols) 44

https://developer.nvidia.com/blog/nvidia-tools-extension-api-nvtx-annotation-tool-for-profiling-code-in-python-and-c-c/

Streams

● Kernels execute in streams
● Stream is passed to kernel invocation
● Streams can execute concurrently

cudaStream_t stream;

...

kernel<<<grid, block, 0, stream>>>(x, b);

More info
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Alan Sussman (from Daniel Nichols) 45

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Streams

Image from https://leimao.github.io/blog/CUDA-Stream/

Alan Sussman (from Daniel Nichols) 46

https://leimao.github.io/blog/CUDA-Stream/

Unified Memory

● Data is on both GPU
and CPU

● GPU takes care of
synchronization

● Incurs small overhead

void sortfile(FILE *fp, int N) {
char *data;
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);
qsort<<<...>>>(data, N, 1, compare);
cudaDeviceSynchronize();

… use data on CPU …
cudaFree(data);

}

More info https://developer.nvidia.com/blog/unified-memory-cuda-
beginners/

Alan Sussman (from Daniel Nichols) 47

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

GPU Programming w/Libraries

Alan Sussman (from Daniel Nichols) 48

GPU Programming w/Libraries

● Linear Algebra
○ CuBLAS, MAGMA, CUTLASS, Eigen, CuSPARSE,

…

Alan Sussman (from Daniel Nichols) 49

GPU Programming w/Libraries

● Linear Algebra
○ CuBLAS, MAGMA, CUTLASS, Eigen, CuSPARSE, …

● Signal Processing
○ CuFFT, ArrayFire, …

Alan Sussman (from Daniel Nichols) 50

GPU Programming w/Libraries

● Linear Algebra
○ CuBLAS, MAGMA, CUTLASS, Eigen, CuSPARSE, …

● Signal Processing
○ CuFFT, ArrayFire, …

● Deep Learning
○ CuDNN, TensorRT, …

Alan Sussman (from Daniel Nichols) 51

GPU Programming w/Libraries

● Linear Algebra
○ CuBLAS, MAGMA,

CUTLASS, Eigen,
CuSPARSE, …

● Signal Processing
○ CuFFT, ArrayFire, …

● Deep Learning
○ CuDNN, TensorRT, …

● Graphics
○ OpenCV, FFmpeg,

OpenGL, …

Alan Sussman (from Daniel Nichols) 52

GPU Programming w/Libraries

● Linear Algebra
○ CuBLAS, MAGMA,

CUTLASS, Eigen,
CuSPARSE, …

● Signal Processing
○ CuFFT, ArrayFire, …

● Deep Learning
○ CuDNN, TensorRT, …

● Graphics
○ OpenCV, FFmpeg,

OpenGL, …
● Algorithms and Data

Structures
○ Thrust, Raja, Kokkos,

OpenACC, OpenMP, ...

Alan Sussman (from Daniel Nichols) 53

An Example: Raja
RAJA::View<double, RAJA::Layout<DIM>> Aview(A, N, N);
RAJA::View<double, RAJA::Layout<DIM>> Bview(B, N, N);
RAJA::View<double, RAJA::Layout<DIM>> Cview(C, N, N);

RAJA::forall<RAJA::loop_exec>(row_range, [=](int row) {
RAJA::forall<RAJA::loop_exec>(col_range, [=](int col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {

dot += Aview(row, k) * Bview(k, col);
}
Cview(row, col) = dot;

});

}); See https://raja.readthedocs.io/en/v0.13.0/tutorial/matrix_multiply.html

Alan Sussman (from Daniel Nichols) 54

https://raja.readthedocs.io/en/v0.13.0/tutorial/matrix_multiply.html

An Example: Raja
RAJA::View<double, RAJA::Layout<DIM>> Aview(A, N, N);
RAJA::View<double, RAJA::Layout<DIM>> Bview(B, N, N);
RAJA::View<double, RAJA::Layout<DIM>> Cview(C, N, N);

RAJA::forall<RAJA::loop_exec>(row_range, [=](int row) {
RAJA::forall<RAJA::loop_exec>(col_range, [=](int col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {

dot += Aview(row, k) * Bview(k, col);
}
Cview(row, col) = dot;

});

}); See https://raja.readthedocs.io/en/v0.13.0/tutorial/matrix_multiply.html

Data views.

Alan Sussman (from Daniel Nichols) 55

https://raja.readthedocs.io/en/v0.13.0/tutorial/matrix_multiply.html

An Example: Raja
RAJA::View<double, RAJA::Layout<DIM>> Aview(A, N, N);
RAJA::View<double, RAJA::Layout<DIM>> Bview(B, N, N);
RAJA::View<double, RAJA::Layout<DIM>> Cview(C, N, N);

RAJA::forall<RAJA::loop_exec>(row_range, [=](int row) {
RAJA::forall<RAJA::loop_exec>(col_range, [=](int col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {

dot += Aview(row, k) * Bview(k, col);
}
Cview(row, col) = dot;

});

}); See https://raja.readthedocs.io/en/v0.13.0/tutorial/matrix_multiply.html

Kernel Execution Policy
- OpenMP
- CUDA
- AMD GPU
- Serial

Alan Sussman (from Daniel Nichols) 56

https://raja.readthedocs.io/en/v0.13.0/tutorial/matrix_multiply.html

Big Picture

● When to use GPUs?

Alan Sussman (from Daniel Nichols) 57

Big Picture

● When to use GPUs?
○ Data parallel tasks & lots of data
○ Performance/$$$ and time-to-solution

Alan Sussman (from Daniel Nichols) 58

Big Picture

● When to use GPUs?
○ Data parallel tasks & lots of data
○ Performance/$$$ and time-to-solution

● What software/algorithm to use?

Alan Sussman (from Daniel Nichols) 59

Big Picture

● When to use GPUs?
○ Data parallel tasks & lots of data
○ Performance/$$$ and time-to-solution

● What software/algorithm to use?
○ Performance critical
■ Native languages

○ Development time & maintainability
■ higher level APIs

Alan Sussman (from Daniel Nichols) 60

