
Parallel Networks and File Systems
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• Midterm – grades posted

• Regrade requests due by end of this week

• Grades – Median: 79 Average: 75 Std. dev.: 18

• Assignment 3 due tomorrow, Apr. 12

• Questions?

• Quiz 2: next week

• Assignment 4 on CUDA out next week

2

Alan Sussman & Abhinav Bhatele (CMSC416)

High-speed interconnection networks
• Typically supercomputers and HPC clusters are connected by low latency, high

bandwidth networks

• High bandwidth easier to obtain – parallelism

• Low latency via fast hardware, RDMA, short software paths (minimize copies)

• The connections between nodes form different topologies

• Popular topologies:

• Fat-tree: Leiserson in 1985, variant of CLOS network – provably efficient communication

• Mesh and torus (2D, 3D)

• Dragonfly

3

Alan Sussman & Abhinav Bhatele (CMSC416)

Network components

• Network interface controller or card

• Router or switch

• Network cables: copper or optical

4

Alan Sussman & Abhinav Bhatele (CMSC416)

Definitions

• Network diameter: length of the shortest path between the most distant nodes on
the network.

• Radix: number of ports on a router

5

Alan Sussman & Abhinav Bhatele (CMSC416)

N-dimensional mesh / torus networks

• Each switch has a small number of nodes connected
to it (often 1)

• Each switch has direct links to 2N switches where N
is the number of dimensions

• Torus = wraparound links (no edges as in a mesh)

• Examples: IBM Blue Gene, Cray X* machines

6

Alan Sussman & Abhinav Bhatele (CMSC416)

Fat-tree network
• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches, Max. number of pods = k

7

Level 1

Level 2

Level 3

Compute
Nodes

Alan Sussman & Abhinav Bhatele (CMSC416)

Dragonfly network

• Two-level hierarchical network using high-radix routers

• Low network diameter

8

Alan Sussman & Abhinav Bhatele (CMSC416)

Dragonfly network

Full graph connecting
groups/supernodes

Various options for
connecting nodes

within a group

Alan Sussman & Abhinav Bhatele (CMSC416)

Life-cycle of a message

10

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Routers/
Switches

Routers/
Switches NIC Destination

Packetization
and injection :
delay:100s of ns

Path finding
delay ~100 ns
Temp storage in buffers

Links - congestion points
traversal time: 1-50 ns

Message destination points:
application dependent

1 micro sec - 10s of sec

Alan Sussman & Abhinav Bhatele (CMSC416)

Congestion due to network sharing
• Sharing refers to network flows of different programs using the same hardware

resources: links, switches

• When multiple programs communicate on the network, they all suffer from
congestion on shared links

11

Program A

Program B

Switch/router

Alan Sussman & Abhinav Bhatele (CMSC416)

Routing algorithm

• Decides how a packet is routed between a source and destination switch

• Static routing: each router is pre-programmed with a routing table

• Can change it at boot time

• Dynamic routing: routing can change at runtime

• Adaptive routing: adapts to network congestion

12

Alan Sussman & Abhinav Bhatele (CMSC416)

Performance variability

13

Performance of control jobs running the same executable and input varies as they are run from day-to-day
on 128 nodes of Cori in 2018-2019

Bhatele et al. The case of performance variability on dragonfly-based systems, IPDPS 2020

Alan Sussman & Abhinav Bhatele (CMSC416)

Performance variability due to congestion

• No variability in computation time

• All of the variability can be
attributed to communication
performance

• Factors:

• Placement of jobs

• Contention for network resources

14

Bhatele et al. http://www.cs.umd.edu/~bhatele/pubs/pdf/2013/sc2013a.pdf

http://www.cs.umd.edu/~bhatele/pubs/pdf/2013/sc2013a.pdf

Alan Sussman & Abhinav Bhatele (CMSC416)

Impact of other jobs

15

April 11 April 16
MILC job in green 25% higher messaging rate

Alan Sussman & Abhinav Bhatele (CMSC416)

Different approaches to mitigating congestion

• Network topology aware node allocation

• Congestion or network flow aware adaptive routing

• Within a job: network topology aware mapping of processes to allocated nodes

16

Alan Sussman & Abhinav Bhatele (CMSC416)

topology-aware node allocation

17

Solution: allocate nodes in a manner that prevents sharing of links by multiple jobs
while maintaining high utilization

Alan Sussman & Abhinav Bhatele (CMSC416)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network traffic)
on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

18

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Alan Sussman & Abhinav Bhatele (CMSC416)

Topology-aware mapping

• Within a job allocation, map processes to nodes intelligently

• Inputs: application communication graph, machine topology

• Graph embedding problem (NP-hard)

• Many heuristics to come up with a solution

• Can be done within a load balancing strategy

19

Parallel Networks and File Systems
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• Assignment 3 late deadline tonight

• Questions?

• Quiz 2: next week

• Assignment 4 on CUDA out on Tuesday

• Due in 2 weeks, May 5

21

Alan Sussman & Abhinav Bhatele (CMSC416)

When do parallel programs perform I/O?

• Reading input datasets

• Writing numerical output

• Writing checkpoints

22

Alan Sussman & Abhinav Bhatele (CMSC416)

Non-parallel I/O

• Designated process does I/O

• All processes send data to/receive data from that one process

• Not scalable

23

Alan Sussman & Abhinav Bhatele (CMSC416)

Parallel filesystem
• Home directories and scratch space are typically on a parallel file system

• Mounted on all login and compute nodes

• Also referred to as I/O sub-system

24

https://wiki.lustre.org/Introduction_to_Lustre

https://wiki.lustre.org/Introduction_to_Lustre

Alan Sussman & Abhinav Bhatele (CMSC416)

Parallel filesystem

25

Compute Cluster

OSS 1

OSS 2

OSS n

MDS

MDS = Metadata Server
OSS = Object Storage Server
OST = Object Storage Target

OST 1

OST 2

OST m

Alan Sussman & Abhinav Bhatele (CMSC416)

Links between cluster and filesystem

26

Alan Sussman & Abhinav Bhatele (CMSC416)

Different parallel filesystems

• Lustre: open-source (lustre.org)

• BeeGFS: community supported (beegfs.io)

• Commercial support too

• GPFS: General Parallel File System from IBM, now called Spectrum Scale

• PVFS: Parallel Virtual File System

27

http://lustre.org/
https://www.beegfs.io/

Alan Sussman & Abhinav Bhatele (CMSC416)

Example: GPFS
• Designed to support high throughput parallel applications, including multimedia

• well suited for scientific computations

• still used in some of Top 500 supercomputers

• Main idea is to use parallel I/O to increase performance and scale to large
configurations

• increase bandwidth by spreading reads and writes (even to a single file) across multiple disks, especially for
sequential access

• avoid the “one file per parallel process” model, or sending all I/O through one node

• use internal high performance switch, plus separate I/O nodes, for I/O from parallel processes running on
compute nodes

• files can be both striped across multiple I/O nodes, and across multiple disks in each I/O node

Alan Sussman & Abhinav Bhatele (CMSC416)

GPFS architecture

4. Out-of-core read/writes for problems which do not fit
the memory.

5. Continuous output of data for visualization and other
post-processing.

In the applications with which we are most familiar,
writes will need to be performed more often than reads,
with categories 2 and 5 dominant.

Finally, we cannot neglect the question of reliability.
To achieve gigabyte-per-second performance there must be
hundreds or thousands of disks, with dozens of servers and
attendant connections. These must all be highly reliable.
More importantly, they must be fail-safe, so that the sys-
tem can continue to function when a component fails.
This requires sophisticated and well-tuned software that
can compensate for failures in a distributed system.

2. Structure and function of GPFS

The GPFS architecture was designed to achieve high
bandwidth for concurrent access to a single file (or, of
course, to separate files), especially for sequential access
patterns. The intended platform for this file system is
IBM’s line of massively parallel computers, the RS/6000
SP, and performance is achieved with commodity disk
technology. The RS/6000 SP line of machines are general
purpose, high end computers which scale to thousands of
processors [9]. Each node runs a Unix kernel and is
autonomous. A proprietary network technology permits
every node to communicate with a corresponding remote
node simultaneously. Access is uniform to all remote
nodes (there is no notion of a “neighbor” node which has
better bandwidth characteristics) [10].

Node-to-node communication is enhanced through the
use of the special network fabric present in IBM SP paral-
lel machines. Commonly referred to simply as “the
switch,” this interconnect provides unidirectional IP at 83
MB/sec for the model installed at LLNL [11].

There has been much research in parallel file systems
(e.g., [12,13,14,15,16,17,18,19]). However, as we need
production-quality file systems that can deliver gigabyte-
per-second throughput, the most relevant systems are In-
tel’s PFS [20] and SGI’s XFS [21]. The main difference
between GPFS and PFS is that the latter has a non-
standard interface and has not shown high performance on
concurrent access to a single file. XFS does use the stan-
dard POSIX interface and has high performance, but works
only for shared memory architectures.

2.1 GPFS architecture

GPFS is implemented as a number of separate soft-
ware subsystems or services. Each service may be distrib-
uted across multiple nodes within an SP system. Many of

the services necessary for GPFS are provided by a persis-
tent GPFS daemon called mmfsd. Among the more im-
portant services provided by mmfsd are (see Fig. 1): (1)
file system access for nodes which wish to mount GPFS;
(2) a metanode service which retains file ownership and
permissions information for a particular file; (3) a stripe
group manager service which manages and maintains in-
formation about the various disks that make up the file
system; (4) a token manager server which synchronizes
concurrent access to files and ensures consistency among
caches; (5) finally a configuration manager which ensures
that a stripe group manager and token manager server are
operational and that a quorum exists.

Figure 1. Overall GPFS architecture

Each of the nodes dedicated to running parallel applica-
tions has an mmfsd daemon present to mount the file
system and perform access. It is responsible for actually
performing the reads and writes performed on that node.

 The Virtual Shared Disk (VSD) layer of GPFS per-
mits a node to locally issue a write that physically occurs
on a disk attached to remote node. The VSD layer there-
fore consists of VSD clients on the application nodes and
VSD servers on the disk-attached I/O nodes.

GPFS is a “client-side cache” design. The cache is
kept in a dedicated and pinned area of each application
node’s memory called the pagepool and is typically around
50 Mbytes per node. This cache is managed with both
read-ahead (prefetch) techniques and write-behind tech-
niques. The read-ahead algorithms are able to discover
sequential access and constant-stride access.

GPFS is multi-threaded. As soon as an application’s
write buffer has been copied into the pagepool, the write
is completed from an application thread’s point of view.
GPFS schedules a worker thread to see the write through
to completion by issuing calls to the VSD layer for
communication to the I/O node. The amount of
concurrency available for write-behind and read-ahead ac-
tivities is determined by the system administrator when
the file system is installed.

Switch

Compute
Nodes

I/O
Nodes

mmfsd app

vsd

Stripe Grp Mgr
Token Mgr Srvr

mmfsd

Metanode

mmfsd

0-7695-0574-0/2000 $10.00 ! 2000 IEEE Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 12,2023 at 21:18:03 UTC from IEEE Xplore. Restrictions apply.

Alan Sussman & Abhinav Bhatele (CMSC416)

GPFS details
• Each node runs a demon (mmfsd) to provide I/O services

• one demon runs a metanode service, to serve file metadata (ownership, permissions), and inode/directory updates

• one demon runs a stripe group manager, to keep track of available disks

• a token manager to synchronize concurrent access to files, maintain consistency across caches

• each application node demon mounts a file system and performs file accesses (through switch, to I/O nodes that have the disks
with the data)

• Client-side caching

• inside Virtual Shared Disk (VSD) layer in kernel (server is on I/O nodes)

• pagepool in each application node’s memory

• read-ahead discovers sequential and constant stride access patterns

• write behind allows application to continue after data copied into pagepool – cost is extra copy to pagepool

Alan Sussman & Abhinav Bhatele (CMSC416)

Tape drive

• Store data on magnetic tapes

• Used for archiving data

• Use robotic arms to access the right tape: https://www.youtube.com/watch?v=d-
eWDuEo-3Q

31

https://www.youtube.com/watch?v=d-eWDuEo-3Q
https://www.youtube.com/watch?v=d-eWDuEo-3Q

Alan Sussman & Abhinav Bhatele (CMSC416)

Burst buffer
• Fast, intermediate storage between compute nodes and the parallel filesystem

• Typically some form of non-volatile (NVM) memory, for persistence, high capacity, and speed (reads and
writes)

• Slower, but higher capacity, than on-node memory (DRAM)

• Faster, but lower capacity, than disk storage on parallel file system

• Two designs:

• Node-local burst buffer

• Remote (shared) burst buffer

• Either way, looks like a separate filesystem to the compute nodes

32

Alan Sussman & Abhinav Bhatele (CMSC416)

Burst buffer in DOE NERSC Cori

B. The Burst Buffer
Burst Buffers can be realized in a variety of ways. In

the case of the Cray DataWarp implementation [2], it is
achieved through SSDs in I/O nodes that are directly connected
to the high-speed network, rather than in compute nodes.
The DataWarp software presents to the application a POSIX
filesystem interface built on these SSDs. However, unlike a tra-
ditional parallel filesystem, this mount is only available to the
compute nodes using it, and for limited duration. The software
also allows for ‘persistent’ Burst Buffer reservations so data
can be re-used by subsequent (or simultaneous) compute jobs
without re-staging. Further details of the software involved are
provided in Section II-C.

The Burst Buffer therefore has the potential for considerably
higher performance than the underlying Parallel File System
(PFS) for a variety of reasons, including the underlying storage
medium and the high-performance network connection, as well
as the possibility to limit metadata load by exposing only the
namespace required for the job or workflow.

C. Burst Buffer use-cases
Burst Buffer technology was primarily conceived as a high-

bandwidth solution for a checkpoint-and-restart application,
but at NERSC there are a variety of additional purposes for
which this technology can be valuable [3]. Example use cases
include:

• IO improvements for:
– High-bandwidth streaming reads and writes, e.g. for

checkpoint-and-restart
– Complex I/O patterns, including those with high IO

operations per second (IOPs), e.g. non-sequential
table lookup

– Out-of-core applications
• Workflow performance improvements (either within one

compute job or across many jobs using a persistent Burst
Buffer reservation) for:

– Coupling applications, using the Burst Buffer as
interim storage between for example simulation and
analysis codes.

– Optimizing node usage by changing node concur-
rency partway through a workflow

– Analysis and visualization: including in-situ, in-
transit and interactive

The early-user projects selected for the NERSC program stress
many of these different use-cases as shown in Section III.

II. NERSC BURST BUFFER

A. Cori
Cori is NERSC’s newest supercomputer system. The Cori

system will be delivered in two phases with the first phase
online now and the second expected in mid-2016. Phase 2 will
be based on the second generation of the Intel Xeon Phi family
of products, called the Knights Landing (KNL) Architecture.
The Phase 1 system (also known as the “Cori Data Partition”)
is a Cray XC40 System with 1632 dual-socket compute nodes

with two 2.3 GHz 16-core Haswell processors and 128 GB
of DRAM per node, a Cray Aries high speed ”dragonfly”
topology interconnect and a number of new features that
will benefit data-intensive science, including the Burst Buffer.
The Cori system also has a very high performance Lustre
scratch filesystem with 27 PB of storage served by 248 OSTs,
providing over 700 GB/s peak performance.

B. Burst Buffer Architecture
The current Cori Phase 1 system has 144 Burst Buffer

nodes. Each NERSC Burst Buffer node contains two Intel
P3608 3.2 TB NAND flash SSD modules attached over two
PCIe gen3 interfaces. A single SSD appears as 2 block devices.
These are packaged two to a blade (shown in Figure 1), and
attached directly to the Cray Aries network interconnect of the
Cori system (Figure 2).

Aries&

Xeon&
E5&v1&

Xeon&
E5&v1&

PCIe&Gen3&8x&

PCIe&Gen3&8x&

PCIe&Gen3&8x&

PCIe&Gen3&8x&

3.2&TB&Intel&P3608&SSD&

3.2&TB&Intel&P3608&SSD&

3.2&TB&Intel&P3608&SSD&

3.2&TB&Intel&P3608&SSD&

To
##H

SN
#

Fig. 1. A Cori Burst Buffer Blade

Blade&&=&2&x&Burst&Buffer&Node&(2x&SSD)&

Lustre&OSSs/OSTs&
CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

BB&
SSD&
SSD&

BB&
SSD&
SSD&

BB&
SSD&
SSD&

BB&
SSD&
SSD&

ION&
IB&
IB&

ION&
IB&
IB&

S
to
ra
g
e
&F
a
b
ri
c&
(I
n
fi
n
iB
a
n
d
)&

Storage&Servers&

Compute&Nodes&

Aries&HighHSpeed&Network&

I/O&Node&(2x&InfiniBand&HCA)&

InfiniBand&Fabric&

Fig. 2. Placement of Burst Buffer nodes in the Cori System

C. Software Environment
In addition to the hardware, NERSC has invested in software

through Non-Recurring Engineering (NRE) projects with Cray
and SchedMD, supporting the Cray DataWarp software, and
integration with the SLURM workload manager (WLM). This
is being delivered in a series of stages. Stage 1 (currently

2

Alan Sussman & Abhinav Bhatele (CMSC416)

Burst buffer use cases

• Main target is high bandwidth checkpoint-restart

• Long-running applications periodically save their state, in case of a failure

• But several other scenarios at NERSC

• Complex I/O patterns with high IOPs – e.g., non-sequential table lookups

• Out-of-core applications

• Workflows – to couple multiple applications – e.g., store data between simulation and analysis components, or
for analysis/visualization (in-situ, in-transit, or interactive)

Alan Sussman & Abhinav Bhatele (CMSC416)

I/O libraries
• High-level libraries: HDF5, NetCDF

• Self-describing data formats w/associated libraries

• Metadata stored in same file with the data

• Data is usually multi-dimensional arrays

• Also interoperate with parallel filesystems

• Middleware: MPI-IO

• MPI-like I/O interface for collective I/O

• Low-level: POSIX IO

• Standard Unix/Linux I/O interface

35

Alan Sussman & Abhinav Bhatele (CMSC416)

Different I/O patterns

• One process reading/writing all the data

• Not scalable, but simple

• Multiple processes reading/writing data from/to shared file

• What parallel filesystems target for high I/O bandwidth

• Multiple processes reading/writing data from/to different files

• Performance depends upon number of readers/writers (how many
processes/threads), file sizes, filesystem organization, etc.

36

Alan Sussman & Abhinav Bhatele (CMSC416)

I/O profiling tools
• Darshan (https://www.mcs.anl.gov/research/projects/darshan/)

• Lightweight profiling tool from Argonne National Lab, still under active development (as of Dec. 2022)

• Captures an accurate picture of application I/O behavior, including properties such as patterns of access within
files, with minimum overhead

• Recorder (https://github.com/uiuc-hpc/Recorder)

• Library for understanding I/O activity in HPC applications

• tracing framework that can capture I/O function calls at multiple levels of the I/O stack, including HDF5,
MPI-IO, and POSIX I/O

• Research prototype from UIUC

37

https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/uiuc-hpc/Recorder

