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Announcements

• Assignment 4 posted Tuesday, due May 2 at 11:59 pm

• Quiz 2 done, 3rd quiz likely last week of class
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MapReduce

• Challenges:

• How to distribute computation?

• Distributed/parallel programming is hard

• Map-reduce addresses this problem for certain kinds of computations

• Started as Google’s computational/data manipulation model

• Overall, an elegant way to work (in parallel) with big data
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Motivation: Google Example
• 20+ billion web pages x 20KB = 400+ TB

• If 1 computer reads 30-35 MB/sec from disk

• ~4 months to read the web

• ~1,000 hard drives to store the web

• Takes even more to do something useful with the data!

• A standard architecture for such problems emerged several years 
ago:

• Cluster of commodity Linux nodes

• Commodity network (e.g., Ethernet) to connect them
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Cluster Architecture several years ago
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In 2011 it was guesstimated that Google had 1M machines, http://bit.ly/Shh0RO
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Large-scale Computing
• Large-scale computing for data analytics problems on commodity 

hardware

• Challenges:

• How do you distribute computation?

• How can we make it easy to write distributed programs?

• Machines fail:

• One server may stay up 3 years (1,000 days)

• If you have 1,000 servers, expect to lose 1/day

• People estimated Google had ~1M machines in 2011

• 1,000 machines fail every day!
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Idea and Solution
• Issue: Copying data over a network takes time

• Idea:

• Bring computation close to the data

• Store files multiple times in multiple locations for reliability

• Map-reduce addresses these problems

• Google’s computational/data manipulation model

• Elegant way to work with big data

• Storage Infrastructure – File system

• Google: GFS   Hadoop: HDFS

• Programming model

• Map-Reduce
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Storage Infrastructure
• Problem:

• If nodes fail, how to store data persistently? 

• Answer:

• Distributed File System:

• Provides global file namespace

• Google GFS; Hadoop HDFS;

• Typical usage pattern

• Huge files (100s of GB to TB)

• Data is rarely updated in place

• Reads and appends are common
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Distributed File System
• Chunk servers

• File is split into contiguous chunks

• Typically each chunk is 16-64MB

• Each chunk replicated (usually 2x or 3x)

• Try to keep replicas in different racks in the cluster

• Primary node

• a.k.a. Name Node in Hadoop’s HDFS

• Stores metadata about where files are stored

• Might be replicated

• Client library for file access

• Talks to primary to find chunk servers 

• Connects directly to chunk servers to access data
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Distributed File System
• Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines 

• Seamless recovery from disk or machine failure
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Programming Model: MapReduce

Warm-up task:

• We have a huge text document

• Count the number of times each distinct word appears in the file

• Sample application: 

• Analyze web server logs to find popular URLs
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Task: Word Count

The Problem:

• Count occurrences of words in a document:

•words(doc.txt) | sort | uniq -c

• where words takes a file and outputs the words in it, one per line

• This pipeline captures the essence of MapReduce

• Great thing is that it is naturally parallelizable
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MapReduce: Overview

• Inspired by LISP 

• Map(function, set of values)

• Applies function to each value in the set
(map ‘length ‘(() (a) (a b) (a b c))) ⇒ (0 1 2 3)

• Reduce(function, set of values)

• Combines all the values using a binary function (e.g.,+)
(reduce #'+ ‘(1 2 3 4 5)) ⇒ 15 
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MapReduce: Overview
• Sequentially read a lot of data

• Map:

• Extract something you care about

• Group by key: Sort and Shuffle

• Reduce:

• Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, Map and 
Reduce change to fit the problem
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MapReduce: The Map Step
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MapReduce: The Reduce Step
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More Specifically
• Input: a set of key-value pairs

• Programmer specifies two methods:

• Map(k, v) ® <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs

• E.g., key is the filename, value is a single line in the file

• There is one Map call for every (k,v) pair

• Reduce(k’, <v’>*) ® <k’, v’’>*

• All values v’ with same key k’ are reduced together and processed in v’ order

• There is one Reduce function call per unique key k’
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MapReduce: Word Counting
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Word Count Using MapReduce
map(key, value):
// key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)
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Map-Reduce: Environment

Map-Reduce environment (runtime system) takes care of:

• Partitioning the input data

• Scheduling the program’s execution across a set of machines

• Performing the group by key step

• Handling machine failures

• Managing required inter-machine communication
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Map-Reduce: A diagram
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Map-Reduce: In Parallel

22
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Map-Reduce
• Programmer specifies:

• Map and Reduce and input files

• Workflow:

• Read inputs as a set of key-value-pairs

• Map transforms input kv-pairs into a new set of k'v'-pairs

• Sorts & Shuffles the k'v'-pairs to output nodes

• All k’v’-pairs with a given k’ are sent to the same reduce

• Reduce processes all k'v'-pairs grouped by key into new k''v''-pairs

• Write the resulting pairs to files

• All phases are distributed with many tasks doing the work
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Shuffle
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Announcements

• Assignment 4 due May 2 at 11:59 pm

• Questions?

• Quiz 3 last week of class
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Data Flow – Hadoop architecture

• Input and final output are stored in a distributed file system 
(FS):

• Scheduler tries to schedule map tasks “close” to physical storage location of input data

• Intermediate results are stored on local FS of Map and 
Reduce workers

• Output is often input to another MapReduce task
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• Input files are where the data for a MapReduce task is
initially stored

• The input files typically reside in a distributed file system
(e.g., HDFS)

• The format of input files is arbitrary

§ Line-based log files

§ Binary files

§ Multi-line input records

§ Or something else entirely, e.g., a database

Input Files

27
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InputFormat

• How the input files are split up and read is defined by
the InputFormat

• InputFormat is a class that does the following:

• Selects the files that should be used for input

•Defines the InputSplits that break a file

• Provides a factory for RecordReader
objects that read the file

28
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InputFormat Types
• Several InputFormats are provided with Hadoop:
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InputFormat Description Key Value
TextInputFormat Default format; 

reads lines of text 
files

The byte 
offset of the 
line

The line contents

KeyValueInputFormat Parses lines into 
(K, V) pairs

Everything up 
to the first tab 
character

The remainder of 
the line

SequenceFileInputFormat A Hadoop-specific 
high-performance 
binary format

user-defined user-defined

Gregory Kesden, Carnegie Mellon U.
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Input Splits

• An input split describes a unit of work that comprises a single map task in a
MapReduce program

• By default, the InputFormat breaks a file up into 64MB splits

• By dividing the file into splits, allow 
several map tasks to operate on a single 
file in parallel

• If the file is very large, this can improve 
performance significantly through parallelism

• Each map task corresponds to a single input split

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

Gregory Kesden, Carnegie Mellon U.
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RecordReader
• The input split defines a slice of work but does not describe how

to access it

• The RecordReader class actually loads data from its source and
converts it into (K, V) pairs suitable for reading by Mappers

• The RecordReader is invoked repeatedly 
on the input until the entire split 
is consumed

• Each invocation of the RecordReader
lead to another call of the map function defined 
by the programmer

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Gregory Kesden, Carnegie Mellon U.
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OutputFormat
• The OutputFormat class defines the way (K,V) pairs 

produced by Reducers are written to output files

• The instances of OutputFormat provided by 
Hadoop write to files on the local disk or 
in HDFS

• Several OutputFormats are provided by Hadoop:

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

OutputFormat

OutputFormat Description
TextOutputFormat Default; writes lines in "key \t 

value" format

SequenceFileOutputFormat Writes binary files suitable for 
reading into subsequent 
MapReduce jobs

NullOutputFormat Generates no output files
Gregory Kesden, Carnegie Mellon U.
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Coordination: Master
• Master node takes care of coordination:

• Task status: (idle, in-progress, completed)

• Idle tasks get scheduled as workers become available

• When a map task completes, it sends the master the location and sizes of its R intermediate files, 
one for each reducer

• Master pushes this info to reducers

• Master pings workers periodically to detect failures
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Dealing with Failures
• Map worker failure

• Map tasks completed or in-progress at worker are reset to idle

• Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure

• Only in-progress tasks are reset to idle 

• Reduce task is restarted

• Master failure

• MapReduce task is aborted and client is notified
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How many Map and Reduce jobs?
• M map tasks, R reduce tasks

• Rule of a thumb:

• Make M much larger than the number of nodes in the cluster

• One DFS chunk per map is common

• Improves dynamic load balancing and speeds up recovery from worker failures

• Usually R is smaller than M

• Because output is spread across R files
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Task Granularity & Pipelining
• Fine granularity tasks: map tasks >> machines

• Minimizes time for fault recovery

• Can do pipeline shuffling with map execution

• Better dynamic load balancing 
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Refinements: Backup Tasks
• Problem

• Slow workers significantly lengthen the job completion time:

• Other jobs on the machine

• Bad disks

• Weird things

• Solution

• Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect

• Dramatically shortens job completion time
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Refinement: Combiners
• Often a Map task will produce many pairs of the form (k,v1), 

(k,v2), … for the same key k

• E.g., popular words in the word count example

• Can save network time by 
pre-aggregating values 
in the mapper:

• combine(k, list(v1)) à v2

• Combiner is usually same 
as the reduce function

• Works only if reduce 
function is commutative and associative
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Refinement: Combiners
• Back to the word counting example:

• Combiner combines the values of all keys of a single mapper (single machine):

• Much less data needs to be copied and shuffled!
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Refinement: Partition Function
• Want to control how keys get partitioned

• Inputs to map tasks are created by contiguous splits of input file

• Reduce needs to ensure that records with the same intermediate key end up at the same 
worker

• System uses a default partition function:
• hash(key) mod R

• Sometimes useful to override the hash function:

• E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the 
same output file

40
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Applications

• Three major classes: 

• Text tokenization, indexing, and search

• Creation of other kinds of data structures (e.g., graphs) 

• Data mining and machine learning 

• See list at https://cwiki.apache.org/confluence/display/HADOOP2/poweredby

• For Machine Learning algorithms, see MAHOUT at http://mahout.apache.org/

• Default backend is now Spark

42
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Example: Host size
• Suppose we have a large web corpus

• Look at the metadata file

• Lines of the form: (URL, size, date, …)

• For each host, find the total number of bytes

• That is, the sum of the page sizes for all URLs from that particular host

• Other examples: 

• Link analysis and graph processing

• Machine Learning algorithms
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Example: Language Model

• Statistical machine translation:

• Need to count number of times every 5-word sequence occurs in a large corpus of documents

• Very easy with MapReduce:

• Map:

• Extract (5-word sequence, count) from document

• Reduce: 

• Combine the counts
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Example: Database Join By Map-Reduce

• Compute the natural join R(A,B) ⋈ S(B,C)

• R and S are each stored in files

• Tuples are pairs (a,b) or (b,c)

45
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Map-Reduce Join
• Use a hash function h from B-values to 1...k

• A Map process turns:

• Each input tuple R(a,b) into key-value pair (b,(a,R))

• Each input tuple S(b,c) into (b,(c,S))

• Map processes send each key-value pair with key b to Reduce process h(b)

• Hadoop does this automatically; just tell it what k is.

• Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs 
(a,c).
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Cost Measures for Algorithms
• In MapReduce we quantify the cost of an algorithm 

using 

1. Communication cost = total I/O of all processes

2. Elapsed communication cost = max of I/O along any path

3. (Elapsed) computation cost analogous, but count only running time of 
processes

Note that here the big-O notation is not the most useful 
(adding more machines is always an option)
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Example: Cost Measures

• For a map-reduce algorithm:
• Communication cost = input file size + 2 ´ (sum of the sizes of all files passed 

from Map processes to Reduce processes) + the sum of the output sizes of the 
Reduce processes.

• Elapsed communication cost is the sum of the largest input + output for any 
map process, plus the same for any reduce process
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What Cost Measures Mean

• Either the I/O (communication) or processing (computation) cost 
dominates

• Ignore one or the other

• Total cost tells what you pay in rent from your friendly 
neighborhood cloud provider

• Elapsed cost is wall-clock time using parallelism
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Cost of Map-Reduce Join
• Total communication cost

= O(|R|+|S|+|R ⋈ S|)

• Elapsed communication cost = O(s)

• We’re going to pick k and the number of Map processes so that the I/O limit s is respected

• We put a limit s on the amount of input or output that any one process can have. s could be:

• What fits in main memory

• What fits on local disk

• With proper indexes, computation cost is linear in the input + output size

• So computation cost is like comm. cost
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Implementations
• Google

• Not available outside Google

• Hadoop

• An open-source implementation in Java

• Uses HDFS for stable storage

• Download: http://hadoop.apache.org/

• Amazon Elastic MapReduce (EMR)
• Hadoop MapReduce running on Amazon EC2

• Can also run Spark, HBase, Hive, Presto …

52
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Reading

• Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing   on 
Large Clusters

• https://research.google.com/archive/mapreduce-osdi04.pdf

• Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The Google File System

• https://research.google.com/archive/gfs-sosp2003.pdf
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Resources
• Hadoop Resources

• Introduction

• https://hadoop.apache.org/

• https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html

• Map/Reduce Overview 

• https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html 

• Eclipse Environment

• https://people.apache.org/~srimanth/hadoop-eclipse/

• Javadoc

• http://hadoop.apache.org/docs/stable/api/
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