
MapReduce and Hadoop
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

With thanks to MMDS authors
Leskovec, Rajaraman, Ullman,

www.mmds.org

Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• Assignment 4 posted Tuesday, due May 2 at 11:59 pm

• Quiz 2 done, 3rd quiz likely last week of class

2

Alan Sussman & Abhinav Bhatele (CMSC416)

MapReduce

• Challenges:

• How to distribute computation?

• Distributed/parallel programming is hard

• Map-reduce addresses this problem for certain kinds of computations

• Started as Google’s computational/data manipulation model

• Overall, an elegant way to work (in parallel) with big data

3

Alan Sussman & Abhinav Bhatele (CMSC416)

Motivation: Google Example
• 20+ billion web pages x 20KB = 400+ TB

• If 1 computer reads 30-35 MB/sec from disk

• ~4 months to read the web

• ~1,000 hard drives to store the web

• Takes even more to do something useful with the data!

• A standard architecture for such problems emerged several years
ago:

• Cluster of commodity Linux nodes

• Commodity network (e.g., Ethernet) to connect them

4

Alan Sussman & Abhinav Bhatele (CMSC416)

Cluster Architecture several years ago

Mem

Disk

CPU
Mem

Disk

CPU
…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU
Mem

Disk

CPU
…

Switch

Switch1 Gbps between
any pair of nodes

in a rack
2-10 Gbps backbone

between racks

In 2011 it was guesstimated that Google had 1M machines, http://bit.ly/Shh0RO
5

http://bit.ly/Shh0RO

Alan Sussman & Abhinav Bhatele (CMSC416)

Large-scale Computing
• Large-scale computing for data analytics problems on commodity

hardware

• Challenges:

• How do you distribute computation?

• How can we make it easy to write distributed programs?

• Machines fail:

• One server may stay up 3 years (1,000 days)

• If you have 1,000 servers, expect to lose 1/day

• People estimated Google had ~1M machines in 2011

• 1,000 machines fail every day!

6

Alan Sussman & Abhinav Bhatele (CMSC416)

Idea and Solution
• Issue: Copying data over a network takes time

• Idea:

• Bring computation close to the data

• Store files multiple times in multiple locations for reliability

• Map-reduce addresses these problems

• Google’s computational/data manipulation model

• Elegant way to work with big data

• Storage Infrastructure – File system

• Google: GFS Hadoop: HDFS

• Programming model

• Map-Reduce

7

Alan Sussman & Abhinav Bhatele (CMSC416)

Storage Infrastructure
• Problem:

• If nodes fail, how to store data persistently?

• Answer:

• Distributed File System:

• Provides global file namespace

• Google GFS; Hadoop HDFS;

• Typical usage pattern

• Huge files (100s of GB to TB)

• Data is rarely updated in place

• Reads and appends are common

8

Alan Sussman & Abhinav Bhatele (CMSC416)

Distributed File System
• Chunk servers

• File is split into contiguous chunks

• Typically each chunk is 16-64MB

• Each chunk replicated (usually 2x or 3x)

• Try to keep replicas in different racks in the cluster

• Primary node

• a.k.a. Name Node in Hadoop’s HDFS

• Stores metadata about where files are stored

• Might be replicated

• Client library for file access

• Talks to primary to find chunk servers

• Connects directly to chunk servers to access data

9

Alan Sussman & Abhinav Bhatele (CMSC416)

Distributed File System
• Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines

• Seamless recovery from disk or machine failure

C0 C1

C2C5
Chunk server 1

D1

C5

Chunk server 3

C1

C3C5
Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2D0

10

Chunk servers also serve as compute servers

Alan Sussman & Abhinav Bhatele (CMSC416)

Programming Model: MapReduce

Warm-up task:

• We have a huge text document

• Count the number of times each distinct word appears in the file

• Sample application:

• Analyze web server logs to find popular URLs

11

Alan Sussman & Abhinav Bhatele (CMSC416)

Task: Word Count

The Problem:

• Count occurrences of words in a document:

•words(doc.txt) | sort | uniq -c

• where words takes a file and outputs the words in it, one per line

• This pipeline captures the essence of MapReduce

• Great thing is that it is naturally parallelizable

12

Alan Sussman & Abhinav Bhatele (CMSC416)

MapReduce: Overview

• Inspired by LISP

• Map(function, set of values)

• Applies function to each value in the set
(map ‘length ‘(() (a) (a b) (a b c))) ⇒ (0 1 2 3)

• Reduce(function, set of values)

• Combines all the values using a binary function (e.g.,+)
(reduce #'+ ‘(1 2 3 4 5)) ⇒ 15

13
Paul Kzryzanowski, Rutgers University

Alan Sussman & Abhinav Bhatele (CMSC416)

MapReduce: Overview
• Sequentially read a lot of data

• Map:

• Extract something you care about

• Group by key: Sort and Shuffle

• Reduce:

• Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, Map and
Reduce change to fit the problem

14

Alan Sussman & Abhinav Bhatele (CMSC416)

MapReduce: The Map Step

vk

k v

k v
map

vk

vk

…
k v

map

Input
key-value pairs

Intermediate
key-value pairs

…

k v

15

Alan Sussman & Abhinav Bhatele (CMSC416)

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate
key-value pairs

Group
by key

reduce

reduce
k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value
groups

Output
key-value pairs

16

Alan Sussman & Abhinav Bhatele (CMSC416)

More Specifically
• Input: a set of key-value pairs

• Programmer specifies two methods:

• Map(k, v) ® <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs

• E.g., key is the filename, value is a single line in the file

• There is one Map call for every (k,v) pair

• Reduce(k’, <v’>*) ® <k’, v’’>*

• All values v’ with same key k’ are reduced together and processed in v’ order

• There is one Reduce function call per unique key k’

17

Alan Sussman & Abhinav Bhatele (CMSC416)

MapReduce: Word Counting

The crew of the space shuttle
Endeavor recently returned to
Earth as ambassadors,
harbingers of a new era of space
exploration. Scientists at NASA
are saying that the recent
assembly of the Dextre bot is the
first step in a long-term space-
based man/mache partnership.
'"The work we're doing now -- the
robotics we're doing -- is what
we're going to need
……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)
(space, 1)

(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs with

same key

Reduce:
Collect all values

belonging to the key
and output

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value)(key, value)

Se
qu

en
tia

lly
 re

ad
 th

e
da

ta
O

nl
y

se

qu
en

tia
l

 r
ea

ds

18

Alan Sussman & Abhinav Bhatele (CMSC416)

Word Count Using MapReduce
map(key, value):
// key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)

19

Alan Sussman & Abhinav Bhatele (CMSC416)

Map-Reduce: Environment

Map-Reduce environment (runtime system) takes care of:

• Partitioning the input data

• Scheduling the program’s execution across a set of machines

• Performing the group by key step

• Handling machine failures

• Managing required inter-machine communication

20

Alan Sussman & Abhinav Bhatele (CMSC416)

Map-Reduce: A diagram

21

Big document
MAP:

Read input and
produces a set of
key-value pairs

Group by
key:

Collect all pairs with
same key

(Hash merge, Shuffle, Sort,
Partition)

Reduce:
Collect all values
belonging to the
key and output

Alan Sussman & Abhinav Bhatele (CMSC416)

Map-Reduce: In Parallel

22

All phases are distributed with many tasks doing the work

Alan Sussman & Abhinav Bhatele (CMSC416)

Map-Reduce
• Programmer specifies:

• Map and Reduce and input files

• Workflow:

• Read inputs as a set of key-value-pairs

• Map transforms input kv-pairs into a new set of k'v'-pairs

• Sorts & Shuffles the k'v'-pairs to output nodes

• All k’v’-pairs with a given k’ are sent to the same reduce

• Reduce processes all k'v'-pairs grouped by key into new k''v''-pairs

• Write the resulting pairs to files

• All phases are distributed with many tasks doing the work

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

23

Hadoop

Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• Assignment 4 due May 2 at 11:59 pm

• Questions?

• Quiz 3 last week of class

25

Alan Sussman & Abhinav Bhatele (CMSC416)

Data Flow – Hadoop architecture

• Input and final output are stored in a distributed file system
(FS):

• Scheduler tries to schedule map tasks “close” to physical storage location of input data

• Intermediate results are stored on local FS of Map and
Reduce workers

• Output is often input to another MapReduce task

26

Alan Sussman & Abhinav Bhatele (CMSC416)

• Input files are where the data for a MapReduce task is
initially stored

• The input files typically reside in a distributed file system
(e.g., HDFS)

• The format of input files is arbitrary

§ Line-based log files

§ Binary files

§ Multi-line input records

§ Or something else entirely, e.g., a database

Input Files

27

file

file

Gregory Kesden, Carnegie Mellon U.

Alan Sussman & Abhinav Bhatele (CMSC416)

InputFormat

• How the input files are split up and read is defined by
the InputFormat

• InputFormat is a class that does the following:

• Selects the files that should be used for input

•Defines the InputSplits that break a file

• Provides a factory for RecordReader
objects that read the file

28

file

file

InputFormat

Files loaded from local HDFS store

Gregory Kesden, Carnegie Mellon U.

Alan Sussman & Abhinav Bhatele (CMSC416)

InputFormat Types
• Several InputFormats are provided with Hadoop:

29

InputFormat Description Key Value
TextInputFormat Default format;

reads lines of text
files

The byte
offset of the
line

The line contents

KeyValueInputFormat Parses lines into
(K, V) pairs

Everything up
to the first tab
character

The remainder of
the line

SequenceFileInputFormat A Hadoop-specific
high-performance
binary format

user-defined user-defined

Gregory Kesden, Carnegie Mellon U.

Alan Sussman & Abhinav Bhatele (CMSC416)

Input Splits

• An input split describes a unit of work that comprises a single map task in a
MapReduce program

• By default, the InputFormat breaks a file up into 64MB splits

• By dividing the file into splits, allow
several map tasks to operate on a single
file in parallel

• If the file is very large, this can improve
performance significantly through parallelism

• Each map task corresponds to a single input split

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

Gregory Kesden, Carnegie Mellon U.

Alan Sussman & Abhinav Bhatele (CMSC416)

RecordReader
• The input split defines a slice of work but does not describe how

to access it

• The RecordReader class actually loads data from its source and
converts it into (K, V) pairs suitable for reading by Mappers

• The RecordReader is invoked repeatedly
on the input until the entire split
is consumed

• Each invocation of the RecordReader
lead to another call of the map function defined
by the programmer

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Gregory Kesden, Carnegie Mellon U.

Alan Sussman & Abhinav Bhatele (CMSC416)

OutputFormat
• The OutputFormat class defines the way (K,V) pairs

produced by Reducers are written to output files

• The instances of OutputFormat provided by
Hadoop write to files on the local disk or
in HDFS

• Several OutputFormats are provided by Hadoop:

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

OutputFormat

OutputFormat Description
TextOutputFormat Default; writes lines in "key \t

value" format

SequenceFileOutputFormat Writes binary files suitable for
reading into subsequent
MapReduce jobs

NullOutputFormat Generates no output files
Gregory Kesden, Carnegie Mellon U.

Alan Sussman & Abhinav Bhatele (CMSC416)

Coordination: Master
• Master node takes care of coordination:

• Task status: (idle, in-progress, completed)

• Idle tasks get scheduled as workers become available

• When a map task completes, it sends the master the location and sizes of its R intermediate files,
one for each reducer

• Master pushes this info to reducers

• Master pings workers periodically to detect failures

33

Alan Sussman & Abhinav Bhatele (CMSC416)

Dealing with Failures
• Map worker failure

• Map tasks completed or in-progress at worker are reset to idle

• Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure

• Only in-progress tasks are reset to idle

• Reduce task is restarted

• Master failure

• MapReduce task is aborted and client is notified

34

Alan Sussman & Abhinav Bhatele (CMSC416)

How many Map and Reduce jobs?
• M map tasks, R reduce tasks

• Rule of a thumb:

• Make M much larger than the number of nodes in the cluster

• One DFS chunk per map is common

• Improves dynamic load balancing and speeds up recovery from worker failures

• Usually R is smaller than M

• Because output is spread across R files

35

Alan Sussman & Abhinav Bhatele (CMSC416)

Task Granularity & Pipelining
• Fine granularity tasks: map tasks >> machines

• Minimizes time for fault recovery

• Can do pipeline shuffling with map execution

• Better dynamic load balancing

36

Alan Sussman & Abhinav Bhatele (CMSC416)

Refinements: Backup Tasks
• Problem

• Slow workers significantly lengthen the job completion time:

• Other jobs on the machine

• Bad disks

• Weird things

• Solution

• Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect

• Dramatically shortens job completion time

37

Alan Sussman & Abhinav Bhatele (CMSC416)

Refinement: Combiners
• Often a Map task will produce many pairs of the form (k,v1),

(k,v2), … for the same key k

• E.g., popular words in the word count example

• Can save network time by
pre-aggregating values
in the mapper:

• combine(k, list(v1)) à v2

• Combiner is usually same
as the reduce function

• Works only if reduce
function is commutative and associative

38

Alan Sussman & Abhinav Bhatele (CMSC416)

Refinement: Combiners
• Back to the word counting example:

• Combiner combines the values of all keys of a single mapper (single machine):

• Much less data needs to be copied and shuffled!

39

Alan Sussman & Abhinav Bhatele (CMSC416)

Refinement: Partition Function
• Want to control how keys get partitioned

• Inputs to map tasks are created by contiguous splits of input file

• Reduce needs to ensure that records with the same intermediate key end up at the same
worker

• System uses a default partition function:
• hash(key) mod R

• Sometimes useful to override the hash function:

• E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the
same output file

40

Problems Suited for Map-Reduce

Alan Sussman & Abhinav Bhatele (CMSC416)

Applications

• Three major classes:

• Text tokenization, indexing, and search

• Creation of other kinds of data structures (e.g., graphs)

• Data mining and machine learning

• See list at https://cwiki.apache.org/confluence/display/HADOOP2/poweredby

• For Machine Learning algorithms, see MAHOUT at http://mahout.apache.org/

• Default backend is now Spark

42

https://cwiki.apache.org/confluence/display/HADOOP2/poweredby
http://mahout.apache.org/

Alan Sussman & Abhinav Bhatele (CMSC416)

Example: Host size
• Suppose we have a large web corpus

• Look at the metadata file

• Lines of the form: (URL, size, date, …)

• For each host, find the total number of bytes

• That is, the sum of the page sizes for all URLs from that particular host

• Other examples:

• Link analysis and graph processing

• Machine Learning algorithms

43

Alan Sussman & Abhinav Bhatele (CMSC416)

Example: Language Model

• Statistical machine translation:

• Need to count number of times every 5-word sequence occurs in a large corpus of documents

• Very easy with MapReduce:

• Map:

• Extract (5-word sequence, count) from document

• Reduce:

• Combine the counts

44

Alan Sussman & Abhinav Bhatele (CMSC416)

Example: Database Join By Map-Reduce

• Compute the natural join R(A,B) ⋈ S(B,C)

• R and S are each stored in files

• Tuples are pairs (a,b) or (b,c)

45

A B
a1 b1
a2 b1
a3 b2
a4 b3

B C
b2 c1
b2 c2
b3 c3

⋈
A C
a3 c1
a3 c2
a4 c3

=

R
S

Alan Sussman & Abhinav Bhatele (CMSC416)

Map-Reduce Join
• Use a hash function h from B-values to 1...k

• A Map process turns:

• Each input tuple R(a,b) into key-value pair (b,(a,R))

• Each input tuple S(b,c) into (b,(c,S))

• Map processes send each key-value pair with key b to Reduce process h(b)

• Hadoop does this automatically; just tell it what k is.

• Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs
(a,c).

46

Alan Sussman & Abhinav Bhatele (CMSC416)

Cost Measures for Algorithms
• In MapReduce we quantify the cost of an algorithm

using

1. Communication cost = total I/O of all processes

2. Elapsed communication cost = max of I/O along any path

3. (Elapsed) computation cost analogous, but count only running time of
processes

Note that here the big-O notation is not the most useful
(adding more machines is always an option)

47

Alan Sussman & Abhinav Bhatele (CMSC416)

Example: Cost Measures

• For a map-reduce algorithm:
• Communication cost = input file size + 2 ´ (sum of the sizes of all files passed

from Map processes to Reduce processes) + the sum of the output sizes of the
Reduce processes.

• Elapsed communication cost is the sum of the largest input + output for any
map process, plus the same for any reduce process

48

Alan Sussman & Abhinav Bhatele (CMSC416)

What Cost Measures Mean

• Either the I/O (communication) or processing (computation) cost
dominates

• Ignore one or the other

• Total cost tells what you pay in rent from your friendly
neighborhood cloud provider

• Elapsed cost is wall-clock time using parallelism

49

Alan Sussman & Abhinav Bhatele (CMSC416)

Cost of Map-Reduce Join
• Total communication cost

= O(|R|+|S|+|R ⋈ S|)

• Elapsed communication cost = O(s)

• We’re going to pick k and the number of Map processes so that the I/O limit s is respected

• We put a limit s on the amount of input or output that any one process can have. s could be:

• What fits in main memory

• What fits on local disk

• With proper indexes, computation cost is linear in the input + output size

• So computation cost is like comm. cost

50

Pointers and Further Reading

Alan Sussman & Abhinav Bhatele (CMSC416)

Implementations
• Google

• Not available outside Google

• Hadoop

• An open-source implementation in Java

• Uses HDFS for stable storage

• Download: http://hadoop.apache.org/

• Amazon Elastic MapReduce (EMR)
• Hadoop MapReduce running on Amazon EC2

• Can also run Spark, HBase, Hive, Presto …

52

http://hadoop.apache.org/

Alan Sussman & Abhinav Bhatele (CMSC416)

Reading

• Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on
Large Clusters

• https://research.google.com/archive/mapreduce-osdi04.pdf

• Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The Google File System

• https://research.google.com/archive/gfs-sosp2003.pdf

53

https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/gfs-sosp2003.pdf

Alan Sussman & Abhinav Bhatele (CMSC416)

Resources
• Hadoop Resources

• Introduction

• https://hadoop.apache.org/

• https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html

• Map/Reduce Overview

• https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

• Eclipse Environment

• https://people.apache.org/~srimanth/hadoop-eclipse/

• Javadoc

• http://hadoop.apache.org/docs/stable/api/

54

https://hadoop.apache.org/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
http://wiki.apache.org/hadoop/HadoopMapReduce
https://people.apache.org/~srimanth/hadoop-eclipse/
http://hadoop.apache.org/docs/stable/api
http://hadoop.apache.org/docs/stable/api/

