Introduction to Parallel Computing (CMSC416)

Alan Sussman, Department of Computer Science

With thanks to MMDS authors Leskovec, Rajaraman, Ullman, www.mmds.org

Announcements

Assignment 4 posted Tuesday, due May 2 at 11:59 pm

• Quiz 2 done, 3rd quiz likely last week of class

MapReduce

Challenges:

• How to distribute computation?

Distributed/parallel programming is hard

Map-reduce addresses this problem for certain kinds of computations

- Started as Google's computational/data manipulation model
- Overall, an elegant way to work (in parallel) with big data

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- If I computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!
- ago:
 - Cluster of commodity Linux nodes
 - Commodity network (e.g., Ethernet) to connect them

• A standard architecture for such problems emerged several years

Cluster Architecture several years ago

Each rack contains 16-64 nodes

In 2011 it was guesstimated that Google had 1M machines, http://bit.ly/Shh0RO

Alan Sussman & Abhinav Bhatele (CMSC416)

5

Large-scale Computing

- hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to lose 1/day
 - People estimated Google had ~IM machines in 2011
 - 1,000 machines fail every day!

Large-scale computing for data analytics problems on commodity

Idea and Solution

Issue: Copying data over a network take

• Idea:

- Bring computation close to the data
- Store files multiple times in multiple locations for reliability

Map-reduce addresses these problems

- Google's computational/data manipulation model
- Elegant way to work with big data
- Storage Infrastructure File system
 - Google: GFS Hadoop: HDFS
- Programming model
 - Map-Reduce

Storage Infrastructure

• Problem:

• If nodes fail, how to store data persistently?

• Answer:

- Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;

• Typical usage pattern

- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common

Distributed File System

Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks in the cluster

Primary node

- a.k.a. Name Node in Hadoop's HDFS •
- Stores metadata about where files are stored
- Might be replicated

Client library for file access

- Talks to primary to find chunk servers
- Connects directly to chunk servers to access data

Distributed File System

- **Reliable distributed file system**
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

Sample application:

Analyze web server logs to find popular URLs

Alan Sussman & Abhinav Bhatele (CMSC416)

Task: Word Count

The Problem:

- Count occurrences of words in a document:
 - words (doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per line
- This pipeline captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

Inspired by LISP

- Map(function, set of values)
 - Applies function to each value in the set (map 'length '(() (a) (a b) (a b c))) \Rightarrow (0 | 2 3)

Reduce(function, set of values)

 Combines all the values using a binary function (e.g.,+) $(reduce \#'+ (1 2 3 4 5)) \Rightarrow 15$

MapReduce: Overview

Sequentially read a lot of data

• Map:

- Extract something you care about
- Group by key: Sort and Shuffle

• Reduce:

- Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, Map and Reduce change to fit the problem

MapReduce: The Map Step

Input key-value pairs key-value pairs

Alan Sussman & Abhinav Bhatele (CMSC416)

Intermediate

. . .

MapReduce: The Reduce Step

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) $\rightarrow \langle k', v' \rangle^*$
 - Takes a key-value pair and outputs a set of key-walue
 - E.g., key is the filename, value is a single line
 - There is one Map call for every (k,v) pair
 - Reduce(k', $\langle v' \rangle^*$) $\rightarrow \langle k', v'' \rangle^*$
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

value pairs		
in the file		

MapReduce: Word Counting

Provided by the programmer

MAP:

Read input and produces a set of key-value pairs

The crew of the space shuttle Endeavor recently returned to ambassadors. Earth as harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term spacebased man/mache partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need

Big document

DEPARTMENT OF

(key, value)

Provided by the programmer

Word Count Using MapReduce

map(key, value):

// key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):

// key: a word; value: an iterator over counts result = 0for each count v in values: result += v emit(key, result)

Map-Reduce: Environment

Map-Reduce environment (runtime system) takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Map-Reduce: A diagram

Map-Reduce: In Parallel

Map-Reduce

- Programmer specifies:
 - Map and Reduce and input files

Workflow:

- Read inputs as a set of key-value-pairs
- Map transforms input kv-pairs into a new set of k'v'-pairs
- Sorts & Shuffles the k'v'-pairs to output nodes
- All k'v'-pairs with a given k' are sent to the same reduce
- **Reduce** processes all k'v'-pairs grouped by key into new k"v"-pairs
- Write the resulting pairs to files
- All phases are distributed with many tasks doing the work

Hadoop

Announcements

- Assignment 4 due May 2 at 11:59 pm
 - Questions?
- Quiz 3 last week of class

Data Flow – Hadoop architecture

Input and final output are stored in a distributed file system **(FS):**

Scheduler tries to schedule map tasks "close" to physical storage location of input data

Intermediate results are stored on local FS of Map and **Reduce workers**

Output is often input to another MapReduce task

Input Files

- files Input initially stored
- typically files The input (e.g., HDFS)
- The format of input files is arbitrary
 - Line-based log files
 - Binary files
 - Multi-line input records
 - Or something else entirely, e.g., a database

are where the data for a MapReduce task is

reside in a distributed file system

Gregory Kesden, Carnegie Mellon U.

InputFormat

- How the input files are split up and read is defined by the InputFormat
- InputFormat is a class that does the following:
 - Selects the files that should be used for input
 - Defines the InputSplits that break a file
 - Provides a factory for RecordReader objects that read the file

28

InputFormat Types

Several InputFormats are provided with Hadoop:

InputFormat	Description	Key	Value
TextInputFormat	Default format; reads lines of text files	The byte offset of the line	The line contents
KeyValueInputFormat	Parses lines into (K, V) pairs	Everything up to the first tab character	The remainder of the line
SequenceFileInputFormat	A Hadoop-specific high-performance binary format	user-defined	user-defined

Gregory Kesden, Carnegie Mellon U.

29

Input Splits

- An input split describes a unit of work that comprises a single map task in a MapReduce program
- By default, the InputFormat breaks a file up into 64MB splits
- By dividing the file into splits, allow several map tasks to operate on a single file in parallel
- If the file is very large, this can improve performance significantly through parallelism
- Each map task corresponds to a single input split

RecordReader

- The input split defines a slice of work but does not describe how to access it
- The RecordReader class actually loads data from its source and converts it into (K, V) pairs suitable for reading by Mappers
- The RecordReader is invoked repeatedly on the input until the entire split is consumed
- Each invocation of the RecordReader lead to another call of the map function defined by the programmer

Files loaded from local HDFS store

Gregory Kesden, Carnegie Mellon U.

OutputFormat

- The OutputFormat class defines the way (K,V) pairs produced by Reducers are written to output files
- The instances of OutputFormat provided by Hadoop write to files on the local disk or in HDFS
- Several OutputFormats are provided by Hadoop:

Description
Default; writes li value" format
Writes binary file reading into sub MapReduce job
Generates no ou

Files loaded from local HDFS store

Coordination: Master

• Master node takes care of coordination:

- **Task status:** (idle, in-progress, completed)
- Idle tasks get scheduled as workers become available
- one for each reducer
- Master pushes this info to reducers
- Master pings workers periodically to detect failures

• When a map task completes, it sends the master the location and sizes of its R intermediate files,

Dealing with Failures

Map worker failure

Map tasks completed or in-progress at worker are reset to idle

Reduce workers are notified when task is rescheduled on another worker

Reduce worker failure

• Only in-progress tasks are reset to idle

Reduce task is restarted

• Master failure

MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

- M map tasks, R reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures

• Usually R is smaller than M

Because output is spread across R files

Task Granularity & Pipelining

• Fine granularity tasks: map tasks >> machines

- Minimizes time for fault recovery
- Can do pipeline shuffling with map execution
- Better dynamic load balancing

Process	Time			>
User Program	MapReduce()			
Master		Assig	'n	tasks
Worker 1		Map	1	М
Worker 2				
Worker 3				Read
Worker 4				

Refinements: Backup Tasks

Problem

- Slow workers significantly lengthen the job completio
 - Other jobs on the machine
 - Bad disks
 - Weird things

Solution

- Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"

Effect

Dramatically shortens job completion time

on time:		

Refinement: Combiners

- Often a Map task will produce many pairs of the form (k,v_1) , $(k, v_2), \ldots$ for the same key k
 - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
 - combine(k, list(v_1)) $\rightarrow v_2$
 - Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative

Refinement: Combiners

Back to the word counting example:

• Combiner combines the values of all keys of a single mapper (single machine):

• Much less data needs to be copied and shuffled!

Refinement: Partition Function

Want to control how keys get partitioned

- Inputs to map tasks are created by contiguous splits of input file
- Reduce needs to ensure that records with the same intermediate key end up at the same worker

System uses a default partition function:

hash(key) mod R

Sometimes useful to override the hash function:

 E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

Problems Suited for Map-Reduce

Applications

- Three major classes:
 - Text tokenization, indexing, and search
 - Creation of other kinds of data structures (e.g., graphs)
 - Data mining and machine learning
- See list at <u>https://cwiki.apache.org/confluence/display/HADOOP2/poweredby</u>
- For Machine Learning algorithms, see MAHOUT at <u>http://mahout.apache.org/</u>
 - Default backend is now Spark

Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)

• For each host, find the total number of bytes

- That is, the sum of the page sizes for all URLs from that particular host
- Other examples:
 - Link analysis and graph processing
 - Machine Learning algorithms

Example: Language Model

• Statistical machine translation:

• Very easy with MapReduce:

• Map:

• Extract (5-word sequence, count) from document

Reduce:

Combine the counts

Alan Sussman & Abhinav Bhatele (CMSC416)

• Need to count number of times every 5-word sequence occurs in a large corpus of documents

Example: Database Join By Map-Reduce

• Compute the natural join $R(A,B) \bowtie S(B,C)$

- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

A	B		B	С	A	С
a ₁	b ₁		b ₂	C ₁	a ₃	C ₁
a ₂	b ₁	M	b ₂	C ₂	a ₃	C ₂
a ₃	b ₂		b ₃	C ₃	a_4	C ₃
a ₄	b ₃			S		
//F	R					

[©] DEPARTMENT OF COMPUTER SCIENCE

Map-Reduce Join

Use a hash function h from B-values to I...k

• A Map process turns:

- Each input tuple R(a,b) into key-value pair (b,(a,R))
- Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- (*a*,*c*).

Each **Reduce process** matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs

Cost Measures for Algorithms

- using
- I. Communication cost = total I/O of all processes
- Elapsed communication cost = max of I/O along any path 2.
- processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)

In MapReduce we quantify the cost of an algorithm

3. (Elapsed) computation cost analogous, but count only running time of

Example: Cost Measures

• For a map-reduce algorithm:

Reduce processes.

map process, plus the same for any reduce process

Alan Sussman & Abhinav Bhatele (CMSC416)

• Communication cost = input file size + $2 \times$ (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the

• Elapsed communication cost is the sum of the largest input + output for any

What Cost Measures Mean

- dominates
 - Ignore one or the other
- Total cost tells what you pay in rent from your friendly neighborhood cloud provider
- Elapsed cost is wall-clock time using parallelism

Either the I/O (communication) or processing (computation) cost

Cost of Map-Reduce Join

Total communication cost $= O(|R|+|S|+|R \bowtie S|)$

Elapsed communication cost = O(s)

- We're going to pick **k** and the number of Map processes so that the I/O limit **s** is respected
- We put a limit **s** on the amount of input or output that any one process can have. **s could be:**
 - What fits in main memory
 - What fits on local disk
- With proper indexes, computation cost is linear in the input + output size

So computation cost is like comm. cost

Pointers and Further Reading

Implementations

Google

Not available outside Google

Hadoop

• An open-source implementation in Java

- Uses HDFS for stable storage
- Download: <u>http://hadoop.apache.org/</u>

Amazon Elastic MapReduce (EMR)

- Hadoop MapReduce running on Amazon EC2
- Can also run Spark, HBase, Hive, Presto ...

n Q. Abbin	av Phatala (C	SMSCALA)	
n & Adnin	av Bhatele (C	LIMISC416)	

Reading

- Large Clusters
 - https://research.google.com/archive/mapreduce-osdi04.pdf

- - https://research.google.com/archive/gfs-sosp2003.pdf

Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The Google File System

Resources

- Hadoop Resources
 - Introduction
 - https://hadoop.apache.org/
 - https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
 - Map/Reduce Overview
 - https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
 - Eclipse Environment
 - https://people.apache.org/~srimanth/hadoop-eclipse/
 - Javadoc
 - http://hadoop.apache.org/docs/stable/api/

UNIVERSITY OF MARYLAND