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Announcements

• Assignment 4 due Tuesday, May 2

• Questions?

• Project 3 grades posted

• Ask TAs if you have questions about the grading

• 3rd quiz will be last week of class – start Tuesday or Wednesday?
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Apache Spark

• Processing engine; instead of just “map” and “reduce”, defines a large set 
of operations (transformations & actions)

• Operations can be arbitrarily combined in any order

• Open source software

• Supports Java, Scala and Python

• Key construct: Resilient Distributed Dataset (RDD)



Alan Sussman & Abhinav Bhatele (CMSC416)

Resilient Distributed Dataset (RDD)
• An RDD is a fault-tolerant collection of elements that can be operated on in parallel

• RDDs represent data or transformations on data

• Two ways to create RDDs: parallelizing an existing collection in your driver program, or referencing a dataset 
in an external storage system, such as a shared filesystem, HDFS, HBase, or any data source offering a 
Hadoop InputFormat

• or by transforming other RDDs (you can stack RDDs)

• Actions can be applied to RDDs; actions force computations and return values

• Lazy evaluation: Nothing computed until an action requires it

• RDDs are best suited for applications that apply the same operation to all elements of a 
dataset

• Less suitable for applications that make asynchronous fine-grained updates to shared state
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Spark example #1 (Scala)
// “sc” is a “Spark context” – this transforms the file into an RDD
val textFile = sc.textFile("README.md")

// Return number of items (lines) in this RDD; count() is an action
textFile.count()

// Demo filtering.  Filter is a transform.  By itself this does no real work
val linesWithSpark = textFile.filter(line => line.contains("Spark"))

// Demo chaining – how many lines contain “Spark”?  count() is an action.
textFile.filter(line => line.contains("Spark")).count()

// Length of line with most words.  Reduce is an action.
textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)

// Word count – traditional map-reduce.  collect() is an action
val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)

wordCounts.collect() https://spark.apache.org/docs/latest/quick-start.html
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Spark example #2 (Python)
#  Estimate π (compute-intensive task).

# Pick  random points in the unit square ((0, 0) to (1,1)),

# See how many fall in the unit circle. The fraction should be π / 4

# Note that “parallelize” method creates an RDD

def sample(p):
x, y = random(), random()
return 1 if x*x + y*y < 1 else 0

count = spark.parallelize(range(0, NUM_SAMPLES)).map(sample)\
.reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)
https://spark.apache.org/docs/latest/quick-start.html
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Parallelized Collections
• Parallelized collections are created by calling SparkContext’s parallelize method on an 

existing iterable or collection in your driver program, for Python (similar idea for 
Scala or Java)

• Important parameter for parallel collections is the number of partitions to cut the 
dataset into

• Spark will run one task for each partition of the cluster

• Typically you want 2-4 partitions for each CPU/core in your cluster

• Spark tries to set the number of partitions automatically based on your cluster

• But you can also set it manually by passing it as a second parameter to parallelize
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Spark Architecture 
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Under the Hood

• General task graphs

• Automatically 
pipelines functions

• Data locality aware

• Partitioning aware to 
avoid shuffles

= cached partition= RDD

join

filter

groupBy
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Spark transformations
• map(func): Return a new distributed dataset formed by passing each element of the 

source through a function func

• flatmap(func): Similar to map, but each input item can be mapped to 0 or more 
output items (so func should return a Seq rather than a single item)

• filter(func): Return a new dataset formed by selecting those elements of the 
source on which func returns true

• union(otherDataset): Return a new dataset that contains the union of the elements 
in the source dataset and the argument.

• intersection(otherDataset): Return a new RDD that contains the intersection of 
elements in the source dataset and the argument.

https://spark.apache.org/docs/latest/rdd-programming-guide.html
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Spark transformations

• distinct([numTasks])): Return a new dataset that contains the distinct elements of 
the source dataset

• join(otherDataset, [numTasks]): When called on datasets of type (K, V) and (K, 
W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. 
Outer joins are supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

• cogroup(otherDataset, [numPartitions]): When called on datasets of type (K, V) and 
(K, W), returns a dataset of (K, (Iterable<V>, Iterable<W>)) tuples. This operation 
is also called groupWith. 
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Spark transformations
• groupByKey([numPartitions]): When called on a dataset of (K, V) pairs, returns a 

dataset of (K, Iterable<V>) pairs. 

• Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using 
reduceByKey or aggregateByKey will yield much better performance

• Note: By default, the level of parallelism in the output depends on the number of partitions of the parent 
RDD. You can pass an optional numPartitions argument to set a different number of tasks

• reduceByKey(func, [numPartitions]): When called on a dataset of (K, V) pairs, 
returns a dataset of (K, V) pairs where the values for each key are aggregated using 
the given reduce function func, which must be of type (V,V) => V. 

• Like in groupByKey, the number of reduce tasks is configurable through an optional second argument. 
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Spark transformations
• aggregateByKey(zeroValue)(seqOp, combOp, [numPartitions]): When called on 

a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each 
key are aggregated using the given combine functions and a neutral "zero" value. 

• Allows an aggregated value type that is different from the input value type, while avoiding unnecessary 
allocations

• Like in groupByKey, the number of reduce tasks is configurable through an optional second argument. 

• sortByKey([ascending], [numPartitions]): When called on a dataset of (K, V) pairs 
where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in 
ascending or descending order, as specified in the boolean ascending argument. 

• And a lot more …
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Sample Spark Actions

• reduce(func): Aggregate the elements of the dataset using a function func (which 
takes two arguments and returns one)

• The function should be commutative and associative so that it can be computed correctly in parallel

• collect(): Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a sufficiently small 
subset of the data.

• count(): Return the number of elements in the dataset

• take(n): Return an array with the first n elements of the dataset. 
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Actions cause calculations to be performed;
transformations just set things up (lazy evaluation)
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Spark – RDD Persistence
• RDDs automatically recover from node failure, with no assistance from user

• You can explicitly persist (cache) an RDD

• When you persist an RDD, each node stores any partitions of it that it computes in memory and reuses them in other actions on
that dataset (or datasets derived from it)

• Allows future actions to be much faster (often >10x).

• Mark RDD to be persisted using the persist() or cache() methods on it. The first time it is computed in an action, it will be kept in 
memory on the nodes.

• Cache is fault-tolerant – if any partition of an RDD is lost, it will automatically be recomputed using the transformations that
originally created it

• Can choose storage level (MEMORY_ONLY, DISK_ONLY, MEMORY_AND_DISK, etc.)

• Default is MEMORY_ONLY

• Can manually call unpersist()

• Otherwise cache is managed by Spark with an LRU policy
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Spark Example #3 (Python)
# Logistic Regression - iterative machine learning algorithm
# Find best hyperplane that separates two sets of points in a
# multi-dimensional feature space.  Applies MapReduce operation
# repeatedly to the same dataset, so it benefits greatly
# from caching the input in RAM

points = spark.textFile(...).map(parsePoint).cache()

w = numpy.random.ranf(size = D) # current separating plane

for i in range(ITERATIONS):

gradient = points.map(

lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x

).reduce(lambda a, b: a + b)

w -= gradient

print "Final separating plane: %s" % w https://spark.apache.org/docs/latest/quick-start.html
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Spark Example #3 (Scala)
// Same thing in Scala

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D) // current separating plane

for (i <- 1 to ITERATIONS) {

val gradient = points.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

).reduce(_ + _)

w -= gradient

}

println("Final separating plane: " + w) https://spark.apache.org/docs/latest/quick-start.html
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Spark Example #3 (Java)
// Same thing in Java

class ComputeGradient extends Function<DataPoint, Vector> {
private Vector w;

ComputeGradient(Vector w) { this.w = w; }
public Vector call(DataPoint p) {
return p.x.times(p.y * (1 / (1 + Math.exp(w.dot(p.x))) - 1));

}

}

JavaRDD<DataPoint> points = spark.textFile(...).map(new ParsePoint()).cache();
Vector w = Vector.random(D); // current separating plane

for (int i = 0; i < ITERATIONS; i++) {
Vector gradient = points.map(new ComputeGradient(w)).reduce(new AddVectors());
w = w.subtract(gradient);

}

System.out.println("Final separating plane: " + w); https://spark.apache.org/docs/latest/quick-start.html
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Broadcast variables
• Allow keeping a read-only variable cached on each machine in the 

cluster, instead of shipping with tasks

• e.g., to give every node a copy of a large input dataset

• Can use efficient broadcast algorithms to reduce communication costs

• Broadcast variable created and used like this:

20

>>> broadcastVar = sc.broadcast([1, 2, 3]) 
<pyspark.broadcast.Broadcast object at 0x102789f10> 

>>> broadcastVar.value
[1, 2, 3]
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Accumulators
• Variables that are only “added” to through an associative and commutative operation

• so can be efficiently supported in parallel

• Can be used to implement counters (as in MapReduce) or sums

• Spark natively supports accumulators of numeric types, and programmers can add support for new types

• Example of accumulator used to sum elements in an array:

21

>>> accum = sc.accumulator(0) 
>>> accum
Accumulator<id=0, value=0> 

>>> sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x)) 
... 

10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

>>> accum.value
10
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Shuffle Operations
• Spark’s mechanism for re-distributing data so that it is grouped differently across partitions

• Typically involves copying data across executors and machines, making shuffle a complex and 
costly operation

• Examples where it is needed include reduceByKey, groupByKey, join, repartition

• Expensive because requires disk I/O, network I/O and data serialization

• Can use a lot of heap memory for in-memory data structures to organize records (before or after data transfers)

• Can also generate a lot of intermediate files on disks, which are preserved until the corresponding RDDs are no longer 
used and are garbage collected

• so the shuffle files don’t need to be re-created if the lineage is re-computed  (e.g., because of a node failure)
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Apache Spark: Libraries “on top” of core 
that come with it
• Spark SQL – for structured data processing

• Datasets for distributed data collections, DataFrames for Datasets organized into named columns (tables!) 

• Spark Structured Streaming – stream processing of live datastreams

• MLlib - machine learning library - DataFrame-based API is now primary API (means 
no new features for RDDs)

• GraphX – graph manipulation

• extends Spark RDD with Graph abstraction: a directed multigraph with properties attached to each vertex 
and edge.

• SparkR (R on Spark) – lightweight frontend to use Spark from R (distributed 
DataFrame operations on large datasets) 
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Gray sort competition: Winner Spark-based 
(previously Hadoop)

Hadoop MR
Record

Spark
Record (2014)

Data Size 102.5 TB 100 TB
Elapsed Time 72 mins 23 mins

# Nodes 2100 206
# Cores 50400 physical 6592 virtualized

Cluster disk 
throughput

3150 GB/s
(est.) 618 GB/s

Network dedicated data 
center, 10Gbps

virtualized (EC2) 10Gbps 
network

Sort rate 1.42 TB/min 4.27 TB/min
Sort rate/node 0.67 GB/min 20.7 GB/min

http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)

Spark-based
System
3x faster
with 1/10

# of nodes
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Spark vs. Hadoop MapReduce
• Performance: Spark normally faster but with caveats

• Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a 
map or reduce action

• Spark generally outperforms MapReduce, but it often needs lots of memory to do well; if 
there are other resource-demanding services or can’t fit in memory, Spark degrades

• MapReduce easily runs alongside other services with minor performance differences, & 
works well with the 1-pass jobs it was designed for

• Ease of use: Spark is easier to program

• Data processing: Spark more general “Spark vs. Hadoop MapReduce” by Saggi Neumann (March 2023)
https://www.xplenty.com/blog/2014/11/apache-spark-vs-hadoop-mapreduce/

https://www.xplenty.com/blog/2014/11/apache-spark-vs-hadoop-mapreduce/


Alan Sussman & Abhinav Bhatele (CMSC416)

For more information
• More Spark examples at http://spark.apache.org/examples.html

• Spark (and Hadoop) Coursera tutorial

• https://www.coursera.org/learn/introduction-to-big-data-with-spark-hadoop

• “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing” by Matei Zaharia et. al
• http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

• Other Spark papers listed at
• https://spark.apache.org/research.html

http://spark.apache.org/examples.html
https://www.coursera.org/learn/introduction-to-big-data-with-spark-hadoop
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
https://spark.apache.org/research.html



