
Spark
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416)

With thanks to D. Wheeler (GMU), T.
Yang (UCSB) and Apache

documentation

Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• Assignment 4 due Tuesday, May 2

• Questions?

• Project 3 grades posted

• Ask TAs if you have questions about the grading

• 3rd quiz will be last week of class – start Tuesday or Wednesday?

2

Alan Sussman & Abhinav Bhatele (CMSC416)

Apache Spark

• Processing engine; instead of just “map” and “reduce”, defines a large set
of operations (transformations & actions)

• Operations can be arbitrarily combined in any order

• Open source software

• Supports Java, Scala and Python

• Key construct: Resilient Distributed Dataset (RDD)

Alan Sussman & Abhinav Bhatele (CMSC416)

Resilient Distributed Dataset (RDD)
• An RDD is a fault-tolerant collection of elements that can be operated on in parallel

• RDDs represent data or transformations on data

• Two ways to create RDDs: parallelizing an existing collection in your driver program, or referencing a dataset
in an external storage system, such as a shared filesystem, HDFS, HBase, or any data source offering a
Hadoop InputFormat

• or by transforming other RDDs (you can stack RDDs)

• Actions can be applied to RDDs; actions force computations and return values

• Lazy evaluation: Nothing computed until an action requires it

• RDDs are best suited for applications that apply the same operation to all elements of a
dataset

• Less suitable for applications that make asynchronous fine-grained updates to shared state

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark example #1 (Scala)
// “sc” is a “Spark context” – this transforms the file into an RDD
val textFile = sc.textFile("README.md")

// Return number of items (lines) in this RDD; count() is an action
textFile.count()

// Demo filtering. Filter is a transform. By itself this does no real work
val linesWithSpark = textFile.filter(line => line.contains("Spark"))

// Demo chaining – how many lines contain “Spark”? count() is an action.
textFile.filter(line => line.contains("Spark")).count()

// Length of line with most words. Reduce is an action.
textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)

// Word count – traditional map-reduce. collect() is an action
val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)

wordCounts.collect() https://spark.apache.org/docs/latest/quick-start.html

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark example #2 (Python)
Estimate π (compute-intensive task).

Pick random points in the unit square ((0, 0) to (1,1)),

See how many fall in the unit circle. The fraction should be π / 4

Note that “parallelize” method creates an RDD

def sample(p):
x, y = random(), random()
return 1 if x*x + y*y < 1 else 0

count = spark.parallelize(range(0, NUM_SAMPLES)).map(sample)\
.reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)
https://spark.apache.org/docs/latest/quick-start.html

Alan Sussman & Abhinav Bhatele (CMSC416)

Parallelized Collections
• Parallelized collections are created by calling SparkContext’s parallelize method on an

existing iterable or collection in your driver program, for Python (similar idea for
Scala or Java)

• Important parameter for parallel collections is the number of partitions to cut the
dataset into

• Spark will run one task for each partition of the cluster

• Typically you want 2-4 partitions for each CPU/core in your cluster

• Spark tries to set the number of partitions automatically based on your cluster

• But you can also set it manually by passing it as a second parameter to parallelize

7

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark Architecture

8

Alan Sussman & Abhinav Bhatele (CMSC416) 9

Alan Sussman & Abhinav Bhatele (CMSC416)

Under the Hood

• General task graphs

• Automatically
pipelines functions

• Data locality aware

• Partitioning aware to
avoid shuffles

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark transformations
• map(func): Return a new distributed dataset formed by passing each element of the

source through a function func

• flatmap(func): Similar to map, but each input item can be mapped to 0 or more
output items (so func should return a Seq rather than a single item)

• filter(func): Return a new dataset formed by selecting those elements of the
source on which func returns true

• union(otherDataset): Return a new dataset that contains the union of the elements
in the source dataset and the argument.

• intersection(otherDataset): Return a new RDD that contains the intersection of
elements in the source dataset and the argument.

https://spark.apache.org/docs/latest/rdd-programming-guide.html

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark transformations

• distinct([numTasks])): Return a new dataset that contains the distinct elements of
the source dataset

• join(otherDataset, [numTasks]): When called on datasets of type (K, V) and (K,
W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key.
Outer joins are supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

• cogroup(otherDataset, [numPartitions]): When called on datasets of type (K, V) and
(K, W), returns a dataset of (K, (Iterable<V>, Iterable<W>)) tuples. This operation
is also called groupWith.

12

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark transformations
• groupByKey([numPartitions]): When called on a dataset of (K, V) pairs, returns a

dataset of (K, Iterable<V>) pairs.

• Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using
reduceByKey or aggregateByKey will yield much better performance

• Note: By default, the level of parallelism in the output depends on the number of partitions of the parent
RDD. You can pass an optional numPartitions argument to set a different number of tasks

• reduceByKey(func, [numPartitions]): When called on a dataset of (K, V) pairs,
returns a dataset of (K, V) pairs where the values for each key are aggregated using
the given reduce function func, which must be of type (V,V) => V.

• Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.

13

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark transformations
• aggregateByKey(zeroValue)(seqOp, combOp, [numPartitions]): When called on

a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each
key are aggregated using the given combine functions and a neutral "zero" value.

• Allows an aggregated value type that is different from the input value type, while avoiding unnecessary
allocations

• Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.

• sortByKey([ascending], [numPartitions]): When called on a dataset of (K, V) pairs
where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in
ascending or descending order, as specified in the boolean ascending argument.

• And a lot more …

14

Alan Sussman & Abhinav Bhatele (CMSC416)

Sample Spark Actions

• reduce(func): Aggregate the elements of the dataset using a function func (which
takes two arguments and returns one)

• The function should be commutative and associative so that it can be computed correctly in parallel

• collect(): Return all the elements of the dataset as an array at the driver program.
This is usually useful after a filter or other operation that returns a sufficiently small
subset of the data.

• count(): Return the number of elements in the dataset

• take(n): Return an array with the first n elements of the dataset.
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Actions cause calculations to be performed;
transformations just set things up (lazy evaluation)

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark – RDD Persistence
• RDDs automatically recover from node failure, with no assistance from user

• You can explicitly persist (cache) an RDD

• When you persist an RDD, each node stores any partitions of it that it computes in memory and reuses them in other actions on
that dataset (or datasets derived from it)

• Allows future actions to be much faster (often >10x).

• Mark RDD to be persisted using the persist() or cache() methods on it. The first time it is computed in an action, it will be kept in
memory on the nodes.

• Cache is fault-tolerant – if any partition of an RDD is lost, it will automatically be recomputed using the transformations that
originally created it

• Can choose storage level (MEMORY_ONLY, DISK_ONLY, MEMORY_AND_DISK, etc.)

• Default is MEMORY_ONLY

• Can manually call unpersist()

• Otherwise cache is managed by Spark with an LRU policy

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark Example #3 (Python)
Logistic Regression - iterative machine learning algorithm
Find best hyperplane that separates two sets of points in a
multi-dimensional feature space. Applies MapReduce operation
repeatedly to the same dataset, so it benefits greatly
from caching the input in RAM

points = spark.textFile(...).map(parsePoint).cache()

w = numpy.random.ranf(size = D) # current separating plane

for i in range(ITERATIONS):

gradient = points.map(

lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x

).reduce(lambda a, b: a + b)

w -= gradient

print "Final separating plane: %s" % w https://spark.apache.org/docs/latest/quick-start.html

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark Example #3 (Scala)
// Same thing in Scala

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D) // current separating plane

for (i <- 1 to ITERATIONS) {

val gradient = points.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

).reduce(_ + _)

w -= gradient

}

println("Final separating plane: " + w) https://spark.apache.org/docs/latest/quick-start.html

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark Example #3 (Java)
// Same thing in Java

class ComputeGradient extends Function<DataPoint, Vector> {
private Vector w;

ComputeGradient(Vector w) { this.w = w; }
public Vector call(DataPoint p) {
return p.x.times(p.y * (1 / (1 + Math.exp(w.dot(p.x))) - 1));

}

}

JavaRDD<DataPoint> points = spark.textFile(...).map(new ParsePoint()).cache();
Vector w = Vector.random(D); // current separating plane

for (int i = 0; i < ITERATIONS; i++) {
Vector gradient = points.map(new ComputeGradient(w)).reduce(new AddVectors());
w = w.subtract(gradient);

}

System.out.println("Final separating plane: " + w); https://spark.apache.org/docs/latest/quick-start.html

Alan Sussman & Abhinav Bhatele (CMSC416)

Broadcast variables
• Allow keeping a read-only variable cached on each machine in the

cluster, instead of shipping with tasks

• e.g., to give every node a copy of a large input dataset

• Can use efficient broadcast algorithms to reduce communication costs

• Broadcast variable created and used like this:

20

>>> broadcastVar = sc.broadcast([1, 2, 3])
<pyspark.broadcast.Broadcast object at 0x102789f10>

>>> broadcastVar.value
[1, 2, 3]

Alan Sussman & Abhinav Bhatele (CMSC416)

Accumulators
• Variables that are only “added” to through an associative and commutative operation

• so can be efficiently supported in parallel

• Can be used to implement counters (as in MapReduce) or sums

• Spark natively supports accumulators of numeric types, and programmers can add support for new types

• Example of accumulator used to sum elements in an array:

21

>>> accum = sc.accumulator(0)
>>> accum
Accumulator<id=0, value=0>

>>> sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x))
...

10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

>>> accum.value
10

Alan Sussman & Abhinav Bhatele (CMSC416)

Shuffle Operations
• Spark’s mechanism for re-distributing data so that it is grouped differently across partitions

• Typically involves copying data across executors and machines, making shuffle a complex and
costly operation

• Examples where it is needed include reduceByKey, groupByKey, join, repartition

• Expensive because requires disk I/O, network I/O and data serialization

• Can use a lot of heap memory for in-memory data structures to organize records (before or after data transfers)

• Can also generate a lot of intermediate files on disks, which are preserved until the corresponding RDDs are no longer
used and are garbage collected

• so the shuffle files don’t need to be re-created if the lineage is re-computed (e.g., because of a node failure)

22

Alan Sussman & Abhinav Bhatele (CMSC416)

Apache Spark: Libraries “on top” of core
that come with it
• Spark SQL – for structured data processing

• Datasets for distributed data collections, DataFrames for Datasets organized into named columns (tables!)

• Spark Structured Streaming – stream processing of live datastreams

• MLlib - machine learning library - DataFrame-based API is now primary API (means
no new features for RDDs)

• GraphX – graph manipulation

• extends Spark RDD with Graph abstraction: a directed multigraph with properties attached to each vertex
and edge.

• SparkR (R on Spark) – lightweight frontend to use Spark from R (distributed
DataFrame operations on large datasets)

Alan Sussman & Abhinav Bhatele (CMSC416)

Gray sort competition: Winner Spark-based
(previously Hadoop)

Hadoop MR
Record

Spark
Record (2014)

Data Size 102.5 TB 100 TB
Elapsed Time 72 mins 23 mins

Nodes 2100 206
Cores 50400 physical 6592 virtualized

Cluster disk
throughput

3150 GB/s
(est.) 618 GB/s

Network dedicated data
center, 10Gbps

virtualized (EC2) 10Gbps
network

Sort rate 1.42 TB/min 4.27 TB/min
Sort rate/node 0.67 GB/min 20.7 GB/min

http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)

Spark-based
System
3x faster
with 1/10

of nodes

Alan Sussman & Abhinav Bhatele (CMSC416)

Spark vs. Hadoop MapReduce
• Performance: Spark normally faster but with caveats

• Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a
map or reduce action

• Spark generally outperforms MapReduce, but it often needs lots of memory to do well; if
there are other resource-demanding services or can’t fit in memory, Spark degrades

• MapReduce easily runs alongside other services with minor performance differences, &
works well with the 1-pass jobs it was designed for

• Ease of use: Spark is easier to program

• Data processing: Spark more general “Spark vs. Hadoop MapReduce” by Saggi Neumann (March 2023)
https://www.xplenty.com/blog/2014/11/apache-spark-vs-hadoop-mapreduce/

https://www.xplenty.com/blog/2014/11/apache-spark-vs-hadoop-mapreduce/

Alan Sussman & Abhinav Bhatele (CMSC416)

For more information
• More Spark examples at http://spark.apache.org/examples.html

• Spark (and Hadoop) Coursera tutorial

• https://www.coursera.org/learn/introduction-to-big-data-with-spark-hadoop

• “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing” by Matei Zaharia et. al
• http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

• Other Spark papers listed at
• https://spark.apache.org/research.html

http://spark.apache.org/examples.html
https://www.coursera.org/learn/introduction-to-big-data-with-spark-hadoop
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
https://spark.apache.org/research.html

