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Announcements

® Quiz 3 will be posted on Wednesday, May 10, | | AM
® In ELMS, for 24 hours

®* Mainly on topics since last quiz

® Course evaluation: https://www.courseevalum.umd.edu
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https://www.courseevalum.umd.edu

Deep neural networks

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data
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Other definitions

® Learning/training: task of selecting weights that lead to an accurate function
® Loss: a scalar proxy that when minimized leads to higher accuracy

® Gradient descent: process of updating the weights using gradients (derivatives) of the
loss weighted by a learning rate

® Mini-batch: Small subsets of the dataset processed iteratively

® Epoch: One pass over all the mini-batches
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Parallel/distributed training

Increase in size of neural networks
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Many layers in DNNs
: Largest Largest Trained Network
pramewors Type,gfParallelism Accelerator Count (No. of Parameters)
FlexFlow Hybrid 64 GPUs 24M*
PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B
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Data parallelism

Data Parallelism
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® Each worker has a full copy of the entire NN and
processes different mini-batches

Layer | Forward Pass Layer | Backward Pass
Layer 2 Backward Pass
Layer 3 Backward Pass

| Layer 4 Backward Pass

Layer 2 Forward Pass
Layer 3 Forward Pass
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® All-reduce operation to synchronize gradients

Layer 4 Forward Pass
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Intra-layer parallelism

® Enables training neural networks that would not fit in memory of a single GPU

® Distribute the work within a layer between multiple processes/GPUs
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Inter-layer parallelism

® Distribute entire layers to different

Inter-layer Parallelism with Pipelining
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Point-to-point communication (activations and )
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concurrent execution
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Use a pipeline of mini-batches to enable
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Layer | Backward Pass
Layer 2 Backward Pass
Layer 3 Backward Pass

Layer 4 Backward Pass



Hybrid parallelism

Using two or more approaches together in the same parallel framework
® 3D parallelism: use all three
® Popular serial frameworks: pytorch, tensorflow

® Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO
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Training vs. inference

® We talked about training, since that is very computationally intensive

® But once the DNN is trained, it is then used to do the ML task it has been designed

to do (inference) — given an input (often not one that was in the input training set),
produce the corresponding output

® (Classification

® Pattern matching

® Inference is much less computationally demanding than training, but will be done
many times, potentially on edge devices (e.g., your smart phone)

SAE® DEPARTMENT OF :
Zﬁwg COMPUTER SCIENCE Alan Sussman & Abhinav Bhatele (CMSC416)



Questions?
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