Introduction to Parallel Computing (CMSC416)

Deep Learning in Parallel

Alan Sussman, Department of Computer Science

Announcements

Quiz 3 will be posted on Wednesday, May 10, 11AM

In ELMS, for 24 hours

Mainly on topics since last quiz

Course evaluation: <u>https://www.courseevalum.umd.edu</u>

Deep neural networks

Other definitions

- Learning/training: task of selecting weights that lead to an accurate function
- Loss: a scalar proxy that when minimized leads to higher accuracy
- Gradient descent: process of updating the weights using gradients (derivatives) of the loss weighted by a learning rate
- Mini-batch: Small subsets of the dataset processed iteratively
- Epoch: One pass over all the mini-batches

Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (mini-batches)
- Many layers in DNNs

Framework	Type of Parallelism	Largest Accelerator Count	Largest Trained Network (No. of Parameters)
FlexFlow	Hybrid	64 GPUs	24M*
PipeDream	Inter-Layer	16 GPUs	138M
DDP	Data	256 GPUs	345M
GPipe	Inter-Layer	8 GPUs	557M
MeshTensorFlow	Intra-Layer	512-core TPUv2	4.9B
Megatron	Intra-Layer	512 GPUs	8.3B
TorchGPipe	Inter-Layer	8 GPUs	15.8B
KARMA	Data	2048 GPUs	17B
LBANN	Data	3072 CPUs	78.6B
ZeRO	Data	400 GPUs	100B

Data parallelism

- Divide training data among workers (G
- Each worker has a full copy of the enti processes different mini-batches
- All-reduce operation to synchronize gi

	Data Parallelism			
	GPU 0			
GPUs)	GPU I	222222	2 2 6 6 6 6	
	GPU 2	33333	33 77777	
ire NN and	GPU 3			
	Time			
		Layer Forward Pass	Layer I Backward Pass	
		Layer 2 Forward Pass	Layer 2 Backward Pass	
radients		Layer 3 Forward Pass	Layer 3 Backward Pass	
radicitus		Layer 4 Forward Pass	Layer 4 Backward Pass	

Intra-layer parallelism

Enables training neural networks that would not fit in memory of a single GPU

Distribute the work within a layer between multiple processes/GPUs

Inter-layer parallelism

- Distribute entire layers to different processes/GPUs
- Map contiguous subsets of layers
- Point-to-point communication (activations and gradients) between processes/GPUs managing different layers
- Use a pipeline of mini-batches to enable concurrent execution

Hybrid parallelism

- Using two or more approaches together in the same parallel framework
- 3D parallelism: use all three
- Popular serial frameworks: pytorch, tensorflow
- Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO

Training vs. inference

- We talked about training, since that is very computationally intensive
- produce the corresponding output
 - Classification
 - Pattern matching

many times, potentially on edge devices (e.g., your smart phone)

But once the DNN is trained, it is then used to do the ML task it has been designed to do (inference) – given an input (often not one that was in the input training set),

Inference is much less computationally demanding than training, but will be done

UNIVERSITY OF MARYLAND

Questions?

