Introduction to Parallel Computing (CMSC416 / CMSC818X)

Alan Sussman, Department of Computer Science

Announcements

Quiz 3 will be posted on tomorrow, Wednesday, May 10, 11AM

In ELMS, for 24 hours

Mainly on topics since last quiz

Course evaluation: <u>https://www.courseevalum.umd.edu</u>

Why machine learning for parallel computing/HPC?

- Proliferation of performance data
 - On-node hardware counters
 - Switch/network port counters
 - Power measurements
 - Traces and profiles
- Supercomputing facility and data center data
 - Job queue logs, performance
 - Sensors: temperature, humidity, power

Types of ML-related tasks in HPC

- Auto-tuning: parameter search
 - Find a well performing configuration
- Predictive models: time, energy, ...
 - Predict system state in the future
 - Time-series analysis
- Identifying root causes/factors
 - For errors, failures (hardware/software), performance, ...

Example 1 - Network congestion

- Responsible for performance degradation, variability and poor scaling
- Congestion and its root causes not well understood
- Study network hardware performance counters and their correlation with execution time
- Use supervised learning to identify hardware components that lead to congestion and performance degradation

https://www.osti.gov/servlets/purl/1184730

Life of a message packet

Experiment - Gathering data for machine learning

Collect network hardware counters data on IBM Blue Gene/Q and use a functional simulator

Hardware resource Contention indicator Injection FIFO length Number of sent packets Receive buffer length Intermediate router Number of hops (dilation)

- Source node Network link All
- - Rubik is a tool from LLNL that maps tasks to nodes in torus or mesh-connected cluster

• Use Rubik task mappings to get a range of execution times for the same application

Gathering data for machine learning - features

Feature avg dilat All Resources max dila sum dila avg bytes avg bytes **Network Link** avg bytes max byte #links A avg stalls avg stalls avg stalls

Intermediate

Router

Source Node

Feature name	Description
avg dilation AO	Avg. dilation of average outliers (AO)
max dilation	Maximum dilation
sum dilation AO	Sum of dilation of AO
avg bytes	Avg. bytes per link
avg bytes AO	Avg. bytes per link for AO
avg bytes TO	Avg. bytes per link for top outliers (TO)
max bytes	Maximum bytes on a link
#links AO bytes	No. of AO links w.r.t. bytes
avg stalls	Avg. receive buffer length
avg stalls AO	Avg. receive buffer length for AO
avg stalls TO	Avg. receive buffer length for TO
max stalls	Maximum receive buffer length
#links AO stalls	No. of AO links w.r.t. recv buffer length
avg stallspp	Avg. number of stalls per rcv'd packet
avg stallspp AO	Avg. no. of stalls per packet for AO
avg stallspp TO	Avg. no. of stalls per packet for TO
max stallspp	Maximum number of stalls per packet
#links AO stallspp	No. of AO links w.r.t. stalls per packet
max inj FIFO	Maximum injection FIFO length

Alan Sussman & Abhinav Bhatele (CMSC416)

8

Experimental Setup

- Three benchmarks: 5-point 2D Halo, 15-point 3D Halo, All-to-all over subcommunicators – MPI codes

	2D I	Halo	3D I	Halo	Sub	A2A	MILC	pF3D	Tota
#Nodes	16 KB	4 MB	16 KB	4 MB	16 KB	4 MB			
1024	84	84	84	84	84	84	208	94	80
4096	84	84	84	84	84	84	103	103	71
Total	168	168	168	168	168	168	311	197	151

Regression methods in scikit-learn (a Python ML library)

extremely randomized trees, gradient boosted regression trees

Alan Sussman & Abhinav Bhatele (CMSC416)

• Two scientific applications: pF3D, MILC – number of task mappings (from Rubik)

Predicting the execution time

- Scale the input features to values between 0 and 1
- Split samples into training and testing set (2/3 : 1/3)
- Generate all possible combinations (2¹⁹) of the 19 input features
- Parallel runs to try all combinations and report prediction scores

Evaluation criteria

Kendall rank correlation coefficient

$concord_{ij} = \begin{cases} 1, \end{cases}$

Coefficient of determination, R²

 $R^2(y, \hat{y}) =$

$$\sum_{\langle i = j < i} concord_{ij} \right) / \left(\frac{n(n-1)}{2}\right)$$

if
$$x_i \ge x_j \& y_i \ge y_j$$

if $x_i < x_j \& y_i < y_j$
otherwise

$$= 1 - rac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$$

Alan Sussman & Abhinav Bhatele (CMSC416)

Prediction on individual datasets

Feature importance (individual datasets)

Feature ranks for RCC (GBRT, Huber loss function)

Alan Sussman & Abhinav Bhatele (CMSC416)

Identifying important features

Identifying important features

Technique for feature selection

- Create split of dataset into training and testing set
- Identify feature subsets that are important at different quantiles
- Use the subsets to identify new feature importances

Learn GBRT regressor with quantile loss function at 0.1 quantile and 0.9 quantile

The causes of network congestion

Alan Sussman & Abhinav Bhatele (CMSC416)

Feature ranks (maroon/red is high and yellow is low)

The causes of network congestion

- Average and maximum length of receive buffers
- Average load on network links
- Maximum length of injection FIFOs

on 128 nodes of Cori in 2018-2019

Data analytics study to understand variability

- Primarily focus on variability arising from sub-optimal communication on the network
- Set up controlled experiments on a dragonfly-based Cray system:
 - Submit jobs of the same applications periodically in the batch queue for ~4 months
- Collect network hardware counters per iteration for each job and other data described later
- Use machine learning to analyze the gathered performance data

Run four applications in control jobs

- Gather network hardware counters on Aries routers connected to my jobs' nodes
- Hardware counters and execution time recorded per iteration

	Application	No. of nodes
S	AMG 1.1	128
Six datasets	AMG 1.1	512
ata	MILC 7.8.0	128
Ö	MILC 7.8.0	512
Si	miniVite 1.0	128
	UMT 2.0	128

Input Parameters

- -P 32 16 16 -n 32 32 32 -problem 2 -P 32 32 32 -n 32 32 32 -problem 2
- n128_large.in
- n512_large.in
- -f nlpkkt240.bin -t 1E-02 -i 6
- custom_8k.cmg 4 2 4 4 4 0.04

Other sources of data for analytics

- Job queue logs
 - Information about jobs running concurrently with a specific control job
- Job placement
 - Number of unique groups and routers to which a control job is assigned
- System-wide counters for all Aries routers gathered using LDMS (Lightweight) **Distributed Metric Service**)
 - All routers: all routers connected to compute or I/O nodes
 - I/O routers: only routers connected to I/O servers

Analysis I: Identifying predictors of deviation

- application
 - Each iteration is treated as an independent sample
- time
- Use gradient boosted regression to generate a predictive model and recursive feature elimination (RFE) to study feature importances

Execution times and network counters data are available for each iteration of the

Create models to predict the deviation of the execution time instead of the absolute

Results: Identifying predictors of deviation

Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.

Analysis II: Forecasting within-run variation

- Idea is to predict next k time steps based on knowledge of *m* previous time steps
- Use a sliding window approach to create the training set
- Use the popular scalar dot-product attention model along with a fully connected neural network
- Explore using different groups of features to understand the impact on model accuracy

Analysis III: Using only system data

- Use system state before a job starts running to predict performance
- No application-specific features are used
- Train a 2-layer neural network that combines multiple datasets
- Goal: develop application-agnostic models

LDMS gathers data every second

< 5 mins prior 🛁

to job

Control Job 'x'

Results: Predicting perf. of unseen jobs

Ian Costello et al. Analytics of Longitudinal System Monitoring Data for Performance Prediction. https://arxiv.org/abs/2007.03451

Alan Sussman & Abhinav Bhatele (CMSC416)

Based on global routers

Results: Potential impact on job schedulers

- features
- Based on whether values of these features are above or below the median

Bin sizes (Execution time)

Classify jobs into likely fast or likely slow based on values of three most important

How to minimize performance variability?

- Topology-aware job scheduling
- Self-tuning systems
 - Adaptive congestion-aware routing
 - Adaptive scheduling of jobs

Availability of large-scale monitoring data

- data: LLNL/LC, LBNL/NERSC, ANL/ALCF
- filesystem, power, cooling

Several Department of Energy laboratories are using LDMS to record monitoring

• Vast quantities of rich but noisy data: on-node (flops, memory, caches), network,

Variability prediction

- Ran a large number of control jobs (hundreds per application): 7 different applications
- Train a classifier (AdaBoost) to predict if an app will experience variation

a
E E
O O
S
\
14

Example 3 - Self-tuning job scheduler

Modify the job scheduler to:

- Obtain recent values of system counters
- Predict if the next job in the queue will experience variability
- If yes, put it back in the queue and try scheduling the next job
- Leverage the Flux scheduler framework developed at LLNL
- (slurm)

Enables running a scheduler within a job partition allocated by the system scheduler

Application performance

Scheduler throughput

Identifying best performing code variants

- Many computational science and engineering (CSE) codes rely on solving sparse linear systems
- Many choices of numerical methods
- Optimal choice w.r.t. performance depends on several things:
 - Input data and its representation, algorithm and its implementation, hardware architecture

Auto-tuning with limited training data

Auto-tuning with limited training data

Application performance depends on many factors:

Input parameters, algorithmic choices, runtime parameters

Auto-tuning with limited training data

- Application performance depends on many factors:
 - Input parameters, algorithmic choices, runtime parameters
- Performance also depends on:
 - Code changes, linked libraries
 - Compilers, architecture

Alan Sussman & Abhinav Bhatele (CMSC416)

40

UNIVERSITY OF MARYLAND

Questions?

