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Announcements

• Quiz 3 will be posted on tomorrow, Wednesday, May 10, 11AM

• In ELMS, for 24 hours

• Mainly on topics since last quiz

• Course evaluation: https://www.courseevalum.umd.edu
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Why machine learning for parallel 
computing/HPC?
• Proliferation of performance data

• On-node hardware counters

• Switch/network port counters

• Power measurements

• Traces and profiles

• Supercomputing facility and data center data

• Job queue logs, performance

• Sensors: temperature, humidity, power
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Types of ML-related tasks in HPC

• Auto-tuning: parameter search

• Find a well performing configuration

• Predictive models: time, energy, …

• Predict system state in the future

• Time-series analysis

• Identifying root causes/factors

• For errors, failures (hardware/software), performance, …
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Example 1 - Network congestion

• Responsible for performance degradation, variability and poor scaling

• Congestion and its root causes not well understood

• Study network hardware performance counters and their correlation with execution 
time

• Use supervised learning to identify hardware components that lead to congestion 
and performance degradation
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Life of a message packet
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Experiment - Gathering data for machine learning

• Collect network hardware counters data on IBM Blue Gene/Q and use a functional 
simulator

• Use Rubik task mappings to get a range of execution times for the same application

• Rubik is a tool from LLNL that maps tasks to nodes in torus or mesh-connected cluster
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Gathering data for machine learning - features
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Experimental Setup
• Three benchmarks: 5-point 2D Halo, 15-point 3D Halo, All-to-all over sub-

communicators – MPI codes

• Two scientific applications: pF3D, MILC – number of task mappings (from Rubik)

• Regression methods in scikit-learn (a Python ML library)

• extremely randomized trees, gradient boosted regression trees 
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Predicting the execution time

• Scale the input features to values between 0 and 1

• Split samples into training and testing set (2/3 : 1/3)

• Generate all possible combinations (219) of the 19 input features

• Parallel runs to try all combinations and report prediction scores
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Evaluation criteria
• Kendall rank correlation coefficient

• Coefficient of determination, R2
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Prediction on individual datasets
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Feature importance (individual datasets)
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Identifying important features

• Use quantile loss function in the GBRT regressor
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Identifying important features
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Technique for feature selection

• Create split of dataset into training and testing set

• Learn GBRT regressor with quantile loss function at 0.1 quantile and 0.9 quantile

• Identify feature subsets that are important at different quantiles

• Use the subsets to identify new feature importances
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The causes of network congestion
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Feature ranks (maroon/red is 
high and yellow is low)
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The causes of network congestion

• Average and maximum length of receive buffers

• Average load on network links

• Maximum length of injection FIFOs
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Example 2 - Interference from other jobs
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Performance of control jobs running the same executable and input varies as they are run from day-to-day 
on 128 nodes of Cori in 2018-2019

Bhatele et al. The case of performance variability on dragonfly-based systems, IPDPS 2020

Concurrently running jobs can 
contend for shared resources: 

network, filesystem
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Data analytics study to understand variability

• Primarily focus on variability arising from sub-optimal communication on the 
network

• Set up controlled experiments on a dragonfly-based Cray system:

• Submit jobs of the same applications periodically in the batch queue for ~4 months

• Collect network hardware counters per iteration for each job and other data 
described later

• Use machine learning to analyze the gathered performance data
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Run four applications in control jobs
• Gather network hardware counters on Aries routers connected to my jobs’ nodes

• Hardware counters and execution time recorded per iteration
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Other sources of data for analytics

• Job queue logs

• Information about jobs running concurrently with a specific control job

• Job placement

• Number of unique groups and routers to which a control job is assigned

• System-wide counters for all Aries routers gathered using LDMS (Lightweight 
Distributed Metric Service)

• All routers: all routers connected to compute or I/O nodes

• I/O routers: only routers connected to I/O servers
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Analysis I: Identifying predictors of deviation

• Execution times and network counters data are available for each iteration of the 
application

• Each iteration is treated as an independent sample

• Create models to predict the deviation of the execution time instead of the absolute 
time

• Use gradient boosted regression to generate a predictive model and recursive 
feature elimination (RFE) to study feature importances
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Results: Identifying predictors of deviation
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Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.

Network switch congestion 
important for some apps while 

end-point congestion more 
important for others
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Analysis II: Forecasting within-run variation

• Idea is to predict next k time steps based on 
knowledge of m previous time steps

• Use a sliding window approach to create the 
training set

• Use the popular scalar dot-product attention 
model along with a fully connected neural 
network

• Explore using different groups of features to 
understand the impact on model accuracy
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Results: Forecasting within-run variation

26

MAPE = Mean Absolute Percentage Error, m = temporal context, k = predicting future time steps

MILC (128 nodes)
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Analysis III: Using only system data

• Use system state before a job starts running to predict performance

• No application-specific features are used

• Train a 2-layer neural network that combines multiple datasets

• Goal: develop application-agnostic models
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Results: Predicting perf. of unseen jobs
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Ian Costello et al. Analytics of Longitudinal System Monitoring Data for Performance Prediction. https://arxiv.org/abs/2007.03451

Based on global routers

https://arxiv.org/abs/2007.03451
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Results: Potential impact on job schedulers
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• Classify jobs into likely fast or likely slow based on values of three most important 
features

• Based on whether values of these features are above or below the median
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How to minimize performance variability?

• Topology-aware job scheduling

• Self-tuning systems

• Adaptive congestion-aware routing

• Adaptive scheduling of jobs
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Availability of large-scale monitoring data
• Several Department of Energy laboratories are using LDMS to record monitoring 

data: LLNL/LC, LBNL/NERSC, ANL/ALCF

• Vast quantities of rich but noisy data: on-node (flops, memory, caches), network, 
filesystem, power, cooling
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Image from Kathleen Shoga’s slides at LLNL
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Variability prediction
• Ran a large number of control jobs (hundreds per application): 7 different 

applications

• Train a classifier (AdaBoost) to predict if an app will experience variation
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Example 3 - Self-tuning job scheduler

• Modify the job scheduler to:

• Obtain recent values of system counters

• Predict if the next job in the queue will experience variability

• If yes, put it back in the queue and try scheduling the next job

• Leverage the Flux scheduler framework developed at LLNL

• Enables running a scheduler within a job partition allocated by the system scheduler 
(slurm)
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Application performance
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Scheduler throughput
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Identifying best performing code variants

• Many computational science and 
engineering (CSE) codes rely on solving 
sparse linear systems

• Many choices of numerical methods

• Optimal choice w.r.t. performance depends 
on several things:

• Input data and its representation, algorithm and its 
implementation, hardware architecture
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Auto-tuning with limited training data
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Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters
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Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture
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Questions?


