
Machine Learning and HPC
Alan Sussman, Department of Computer Science

Introduction to Parallel Computing (CMSC416 / CMSC818X)



Alan Sussman & Abhinav Bhatele (CMSC416)

Announcements

• Quiz 3 will be posted on tomorrow, Wednesday, May 10, 11AM

• In ELMS, for 24 hours

• Mainly on topics since last quiz

• Course evaluation: https://www.courseevalum.umd.edu

2

https://www.courseevalum.umd.edu


Alan Sussman & Abhinav Bhatele (CMSC416)

Why machine learning for parallel 
computing/HPC?
• Proliferation of performance data

• On-node hardware counters

• Switch/network port counters

• Power measurements

• Traces and profiles

• Supercomputing facility and data center data

• Job queue logs, performance

• Sensors: temperature, humidity, power

3



Alan Sussman & Abhinav Bhatele (CMSC416)

Types of ML-related tasks in HPC

• Auto-tuning: parameter search

• Find a well performing configuration

• Predictive models: time, energy, …

• Predict system state in the future

• Time-series analysis

• Identifying root causes/factors

• For errors, failures (hardware/software), performance, …

4



Alan Sussman & Abhinav Bhatele (CMSC416)

Example 1 - Network congestion

• Responsible for performance degradation, variability and poor scaling

• Congestion and its root causes not well understood

• Study network hardware performance counters and their correlation with execution 
time

• Use supervised learning to identify hardware components that lead to congestion 
and performance degradation

5

https://www.osti.gov/servlets/purl/1184730



Alan Sussman & Abhinav Bhatele (CMSC416)

Life of a message packet

6



Alan Sussman & Abhinav Bhatele (CMSC416)

Experiment - Gathering data for machine learning

• Collect network hardware counters data on IBM Blue Gene/Q and use a functional 
simulator

• Use Rubik task mappings to get a range of execution times for the same application

• Rubik is a tool from LLNL that maps tasks to nodes in torus or mesh-connected cluster

7



Alan Sussman & Abhinav Bhatele (CMSC416)

Gathering data for machine learning - features

8

Source Node

Intermediate 
Router

Network Link

All Resources



Alan Sussman & Abhinav Bhatele (CMSC416)

Experimental Setup
• Three benchmarks: 5-point 2D Halo, 15-point 3D Halo, All-to-all over sub-

communicators – MPI codes

• Two scientific applications: pF3D, MILC – number of task mappings (from Rubik)

• Regression methods in scikit-learn (a Python ML library)

• extremely randomized trees, gradient boosted regression trees 

9



Alan Sussman & Abhinav Bhatele (CMSC416)

Predicting the execution time

• Scale the input features to values between 0 and 1

• Split samples into training and testing set (2/3 : 1/3)

• Generate all possible combinations (219) of the 19 input features

• Parallel runs to try all combinations and report prediction scores

10



Alan Sussman & Abhinav Bhatele (CMSC416)

Evaluation criteria
• Kendall rank correlation coefficient

• Coefficient of determination, R2

11



Alan Sussman & Abhinav Bhatele (CMSC416)

Prediction on individual datasets

12



Alan Sussman & Abhinav Bhatele (CMSC416)

Feature importance (individual datasets)

13



Alan Sussman & Abhinav Bhatele (CMSC416)

Identifying important features

• Use quantile loss function in the GBRT regressor

14



Alan Sussman & Abhinav Bhatele (CMSC416)

Identifying important features

15



Alan Sussman & Abhinav Bhatele (CMSC416)

Technique for feature selection

• Create split of dataset into training and testing set

• Learn GBRT regressor with quantile loss function at 0.1 quantile and 0.9 quantile

• Identify feature subsets that are important at different quantiles

• Use the subsets to identify new feature importances

16



Alan Sussman & Abhinav Bhatele (CMSC416)

The causes of network congestion

17

Feature ranks (maroon/red is 
high and yellow is low)



Alan Sussman & Abhinav Bhatele (CMSC416)

The causes of network congestion

• Average and maximum length of receive buffers

• Average load on network links

• Maximum length of injection FIFOs

18



Alan Sussman & Abhinav Bhatele (CMSC416)

Example 2 - Interference from other jobs

19

Performance of control jobs running the same executable and input varies as they are run from day-to-day 
on 128 nodes of Cori in 2018-2019

Bhatele et al. The case of performance variability on dragonfly-based systems, IPDPS 2020

Concurrently running jobs can 
contend for shared resources: 

network, filesystem



Alan Sussman & Abhinav Bhatele (CMSC416)

Data analytics study to understand variability

• Primarily focus on variability arising from sub-optimal communication on the 
network

• Set up controlled experiments on a dragonfly-based Cray system:

• Submit jobs of the same applications periodically in the batch queue for ~4 months

• Collect network hardware counters per iteration for each job and other data 
described later

• Use machine learning to analyze the gathered performance data

20



Alan Sussman & Abhinav Bhatele (CMSC416)

Run four applications in control jobs
• Gather network hardware counters on Aries routers connected to my jobs’ nodes

• Hardware counters and execution time recorded per iteration

21

Si
x 

da
ta

se
ts



Alan Sussman & Abhinav Bhatele (CMSC416)

Other sources of data for analytics

• Job queue logs

• Information about jobs running concurrently with a specific control job

• Job placement

• Number of unique groups and routers to which a control job is assigned

• System-wide counters for all Aries routers gathered using LDMS (Lightweight 
Distributed Metric Service)

• All routers: all routers connected to compute or I/O nodes

• I/O routers: only routers connected to I/O servers

22



Alan Sussman & Abhinav Bhatele (CMSC416)

Analysis I: Identifying predictors of deviation

• Execution times and network counters data are available for each iteration of the 
application

• Each iteration is treated as an independent sample

• Create models to predict the deviation of the execution time instead of the absolute 
time

• Use gradient boosted regression to generate a predictive model and recursive 
feature elimination (RFE) to study feature importances

23



Alan Sussman & Abhinav Bhatele (CMSC416)

Results: Identifying predictors of deviation

24

Relevance scores of each counter in predicting the deviation from mean behavior for the different datasets.

Network switch congestion 
important for some apps while 

end-point congestion more 
important for others



Alan Sussman & Abhinav Bhatele (CMSC416)

Analysis II: Forecasting within-run variation

• Idea is to predict next k time steps based on 
knowledge of m previous time steps

• Use a sliding window approach to create the 
training set

• Use the popular scalar dot-product attention 
model along with a fully connected neural 
network

• Explore using different groups of features to 
understand the impact on model accuracy

25



Alan Sussman & Abhinav Bhatele (CMSC416)

Results: Forecasting within-run variation

26

MAPE = Mean Absolute Percentage Error, m = temporal context, k = predicting future time steps

MILC (128 nodes)



Alan Sussman & Abhinav Bhatele (CMSC416)

Analysis III: Using only system data

• Use system state before a job starts running to predict performance

• No application-specific features are used

• Train a 2-layer neural network that combines multiple datasets

• Goal: develop application-agnostic models

27



Alan Sussman & Abhinav Bhatele (CMSC416)

Results: Predicting perf. of unseen jobs

28

Ian Costello et al. Analytics of Longitudinal System Monitoring Data for Performance Prediction. https://arxiv.org/abs/2007.03451

Based on global routers

https://arxiv.org/abs/2007.03451


Alan Sussman & Abhinav Bhatele (CMSC416)

Results: Potential impact on job schedulers

29

• Classify jobs into likely fast or likely slow based on values of three most important 
features

• Based on whether values of these features are above or below the median



Alan Sussman & Abhinav Bhatele (CMSC416)

How to minimize performance variability?

• Topology-aware job scheduling

• Self-tuning systems

• Adaptive congestion-aware routing

• Adaptive scheduling of jobs

30



Alan Sussman & Abhinav Bhatele (CMSC416)

Availability of large-scale monitoring data
• Several Department of Energy laboratories are using LDMS to record monitoring 

data: LLNL/LC, LBNL/NERSC, ANL/ALCF

• Vast quantities of rich but noisy data: on-node (flops, memory, caches), network, 
filesystem, power, cooling

31

Image from Kathleen Shoga’s slides at LLNL



Alan Sussman & Abhinav Bhatele (CMSC416)

Variability prediction
• Ran a large number of control jobs (hundreds per application): 7 different 

applications

• Train a classifier (AdaBoost) to predict if an app will experience variation

32



Alan Sussman & Abhinav Bhatele (CMSC416)

Example 3 - Self-tuning job scheduler

• Modify the job scheduler to:

• Obtain recent values of system counters

• Predict if the next job in the queue will experience variability

• If yes, put it back in the queue and try scheduling the next job

• Leverage the Flux scheduler framework developed at LLNL

• Enables running a scheduler within a job partition allocated by the system scheduler 
(slurm)

33



Alan Sussman & Abhinav Bhatele (CMSC416)

Application performance

34



Alan Sussman & Abhinav Bhatele (CMSC416)

Scheduler throughput

35



Alan Sussman & Abhinav Bhatele (CMSC416)

Identifying best performing code variants

• Many computational science and 
engineering (CSE) codes rely on solving 
sparse linear systems

• Many choices of numerical methods

• Optimal choice w.r.t. performance depends 
on several things:

• Input data and its representation, algorithm and its 
implementation, hardware architecture

36



Alan Sussman & Abhinav Bhatele (CMSC416)

Auto-tuning with limited training data

1 10 100 1000

N
um

be
ro
f

co
nf
gu
ra
tio
ns

Execution time
(s)

Kripke: Performance variation due to input
parameters
90

80

70

60

50

40

30

20

10

0



Alan Sussman & Abhinav Bhatele (CMSC416)

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters
60

50

40

30

20

10

0

70

80

90

1 10 100 1000

N
um

be
ro
f

co
nf
gu
ra
tio
ns

Execution time
(s)

Kripke: Performance variation due to input
parameters



Alan Sussman & Abhinav Bhatele (CMSC416)

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

0

10

20

30

40

50

60

70

10 30 40

N
um

be
ro
f

ru
ns

20
Execution time

(s)

Quicksilver: Performance variation due to external
factors



Questions?


