CMSC 420: Spring 2023

CMSC 420: Short Reference Guide

This document contains a short summary of information about algorithm analysis and data structures, which may be useful later in the semester.
Asymptotic Forms: The following gives both the formal " c and n_{0} " definitions and an equivalent limit definition for the standard asymptotic forms. Assume that f and g are nonnegative functions.

Asymptotic Form	Relationship	Limit Form	Formal Definition
$f(n) \in \Theta(g(n))$	$f(n) \equiv g(n)$	$0<\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$	$\exists c_{1}, c_{2}, n_{0}, \forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$.
$f(n) \in O(g(n))$	$f(n) \preceq g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$	$\exists c, n_{0}, \forall n \geq n_{0}, 0 \leq f(n) \leq c g(n)$.
$f(n) \in \Omega(g(n))$	$f(n) \succeq g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0$	$\exists c, n_{0}, \forall n \geq n_{0}, 0 \leq c g(n) \leq f(n)$.
$f(n) \in o(g(n))$	$f(n) \prec g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$	$\forall c, \exists n_{0}, \forall n \geq n_{0}, 0 \leq f(n) \leq c g(n)$.
$f(n) \in \omega(g(n))$	$f(n) \succ g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$	$\forall c, \exists n_{0}, \forall n \geq n_{0}, 0 \leq c g(n) \leq f(n)$.

Polylog-Polynomial-Exponential: For any constants a, b, and c, where $b>0$ and $c>1$.

$$
\log ^{a} n \prec n^{b} \prec c^{n} .
$$

Common Summations: Let c be any constant, $c \neq 1$, and $n \geq 0$.

Name of Series	Formula	Closed-Form Solution	Asymptotic
Constant Series	$\sum_{i=a}^{b} 1$	$=\max (b-a+1,0)$	$\Theta(b-a)$
Arithmetic Series	$\sum_{i=0}^{n} i=0+1+2+\cdots+n$	$=\frac{n(n+1)}{2}$	$\Theta\left(n^{2}\right)$
Geometric Series	$\sum_{i=0}^{n} c^{i}=1+c+c^{2}+\cdots+c^{n}$	$=\frac{c^{n+1}-1}{c-1}$	$\left\{\begin{array}{l}\Theta\left(c^{n}\right)(c>1) \\ \Theta(1)(c<1) \\ \text { Quadratic Series }\end{array} \sum_{i=0}^{n} i^{2}=1^{2}+2^{2}+\cdots+n^{2}\right.$
Linear-geom. Series	$\sum_{i=0}^{n-1} i c^{i}=c+2 c^{2}+3 c^{3} \cdots+n c^{n}$	$=\frac{2 n^{2}+n}{6}$	$\Theta(n-1) c^{(n+1)}-n c^{n}+c$
$(c-1)^{2}$	$\Theta\left(n c^{n}\right)$		
Harmonic Series	$\sum_{i=1}^{n} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$	$\approx \ln n$	$\Theta(\log n)$

Recurrences: Recursive algorithms (especially those based on divide-and-conquer) can often be analyzed using the so-called Master Theorem, which states that given constants $a>0, b>1$, and $d \geq 0$, the function $T(n)=a T(n / b)+O\left(n^{d}\right)$, has the following asymptotic form:

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log ^{2} n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a .\end{cases}
$$

For example, suppose that we have the following recurrence (which arises in the analysis of quadtrees). Assuming $n \geq 1$ is a power of 4 :

$$
T(n)= \begin{cases}1 & n=1 \\ 2 T\left(\frac{n}{4}\right)+1 & \text { otherwise } .\end{cases}
$$

We have $a=2, b=4$, and $d=0$ (because $1=O\left(n^{0}\right)$). We have $\log _{b} a=\log _{4} 2=\frac{1}{2}$, and clearly $d=0<\frac{1}{2}$, and therefore the third case applies, yielding $T(n)=O\left(n^{\log _{4} 2}\right)=O\left(n^{1 / 2}\right)=O(\sqrt{n})$.

Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let $[m]$ denote the set $\{0, \ldots, m\}$, and let $[m]^{k}$ denote the set of ordered k-tuples, where each element is taken from $[m]$. A sorting algorithm is stable if it preserves the relative order of equal elements. A sorting algorithm is in-place if it uses no additional array storage other than the input array (although $O(\log n)$ additional space is allowed for the recursion stack). The comparison-based algorithms (Insertion-, Merge-, Heap-, and QuickSort) operate under the general assumption that there is a comparator function $f(x, y)$ that takes two elements x and y and determines whether $x<y, x=y$, or $x>y$.

Algorithm	Domain	Time	Space	Stable	In-place
CountingSort	Integers $[m]$	$O(n+m)$	$O(n+m)$	Yes	No
RadixSort	Integers $[m]^{k}$ or $\left[m^{k}\right]$	$O(k(n+m))$	$O(k n+m)$	Yes	No
InsertionSort	Total order	$O\left(n^{2}\right)$	$O(n)$	Yes	Yes
MergeSort HeapSort QuickSort	Total order	$O(n \log n)$	$O(n)$	Yes No Yes/No*	No Yes No/Yes

*There are two versions of QuickSort, one which is stable but not in-place, and one which is in-place but not stable.

Order statistics: For any $k, 1 \leq k \leq n$, the k th smallest element of a set of size n (over a totally ordered domain) can be computed in $O(n)$ time.

Useful Data Structures: All the following data structures use $O(n)$ space to store n objects:
Unordered Dictionary: (by hashing) Insert, delete, and find in $O(1)$ expected time each. (Note that you can find an element exactly, but you cannot quickly find its predecessor or successor.)
Ordered Dictionary: (by balanced binary trees or skiplists) Insert, delete, find, predecessor, successor, merge, split in $O(\log n)$ time each. (Merge means combining the contents of two dictionaries, where the elements of one dictionary are all smaller than the elements of the other. Split means splitting a dictionary into two about a given value x, where one dictionary contains all the items less than or equal to x and the other contains the items greater than x.) Given the location of an item x in the data structure, it is possible to locate a given element y in time $O(\log k)$, where k is the number of elements between x and y (inclusive).
Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease/increase-key in $O(\log n)$ time. Find-min in $O(1)$ time each. Make-heap from n keys in $O(n)$ time.

Priority Queues: (by Fibonacci heaps) Supports insert, find-min, decrease-key all in $O(1)$ amortized time. (That is, a sequence of length m takes $O(m)$ total time.) Extract-min and delete take $O(\log n)$ worst-case time, where n is the number of items in the heap.

Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint sets and find the set containing an element in $O(\log n)$ time each. A sequence of m operations can be done in $O(\alpha(m, n))$ amortized time. That is, the entire sequence can be done in $O(m \cdot \alpha(m, n))$ time. (α is the extremely slow growing inverse-Ackerman function.)

