
CMSC 420: Spring 2023

CMSC 420 (0201) - Midterm Exam 2

Problem 1. (10 points) Consider the kd-tree shown in Fig. 1. Assume a “standard” kd-tree where
the cutting dimensions alternate between x and y with each level.
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Figure 1: kd-Tree operations.

(a) (5 points) Show the final tree after the operation insert((6,6)). You need only show
the tree, not the spatial subdivision.

(b) (5 points) Starting with the original tree, show the final tree after delete((3,6)).
Indicate which nodes were used as replacement nodes. (Intermediate results are not
required, but may be given for partial credit.)

Problem 2. (35 points) Short answer questions. No explanations required, but can be given for
partial credit.

(a) (7 points) Consider a 2-dimensional point quadtree with m nodes. As an exact function
of m, how many null pointers does it have? (Partial credit given depending on how
close.)

(b) (7 points) You have a scapegoat tree, but you make two changes. First, a rebuild
is triggered when an inserted node’s depth exceeds log10/9 n (instead of log3/2 n), and
second a node p is declared a scapegoat if size(p.child)/size(p) > 9/10 (instead of
2/3). Compared to the standard scapegoat tree, what changes? (Select all that apply.)

(1) The tree’s height will tend to be larger

(2) The tree’s height will tend to be smaller

(3) Subtrees will tend to be rebuilt more often

(4) Subtrees will tend to be rebuilt less often

(c) (3 points) What is the maximum number of subtrees that may need to be rebuilt as a
result of a single insertion into a scapegoat tree? (Select the best option.)

1



(1) 1

(2) More than one, but a constant number

(3) O(d), where d is the depth of the inserted node

(4) O(h), where h is the overall height of the tree (even if the node is inserted at a much
smaller depth)

(5) Larger than O(h)

(d) (7 points) You have a skip list with n nodes. Suppose that rather than using a fair coin
to decide a node’s height, you instead use a coin that comes up heads with probability
3/5 and tails with probability 2/5. All nodes start at level 0, and a node survives to
the next higher level if the coin toss comes up heads. As a function of n, what is the
expected number of nodes that survive to level 2 and higher?

(e) (3 points) You have a skip list containing n keys, where n is a large number. Suppose
you perform a find operation. The search algorithm visits one or more nodes at each
level of the structure. How many nodes do you expect to visit at level 4 of the search
structure?

(1) None of them

(2) O(1)

(3) O(log n)

(4) O(n/(24))

(5) All of them

(f) (5 points) Splay trees operate by performing most rotations in groups of two (zig-zag
and zig-zig). Why is this necessary? In particular, why not just perform single rotations
from the bottom up to bring the node up to the root?

(g) (3 points) You have a splay tree with a large number n of keys, and you perform a long
series of m find operations (where m is much larger than n). Suppose that one key
is extremely popular, say "Taylor Swift". Indeed, every third find is made to this
popular key. What can you say about the time needed for the find operations on this
popular key?

(1) They will have an amortized cost O(1)

(2) They will have an amortized cost of O(log n), but not O(1)

(3) They will have an amortized cost of O((log n)3), but not O(log n)

(4) They will have an amortized cost of O(n), but not O((log n)3)

(5) They will have an amortized cost exceeding O(n)

Problem 3. (15 points) You are given a 2-dimensional point set stored in a standard kd-tree
(cutting dimensions alternate). Let root denote its root, and let rootCell denote the root’s
rectangular cell.

Our objective is to answer queries of the form “What is the top rated restaurant in a given
region?” To do this, in addition to its coordinates, each point pt ∈ P stores a positive integer
rating, pt.rating (see Fig. 2(a)). We are given a query rectangle Q, with lower-left and
upper-right corner points, Q.lo and Q.hi, respectively. The function rangeMax(Q) returns
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the maximum rating among the points of P that lie within Q (see Fig. 2(b)). If there are no
points in the range, it returns 0.

To help, each node p in the tree stores a field maxRating, which is the maximum rating over
all the points in p’s subtree (see Fig. 2(c)).
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class KDNode {

Point point // node’s point

int cutDim // node’s cutting dim

int maxRating // max rating in subtree

KDNode left, right // children

}
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Figure 2: Range max queries.

(a) (10 points) Present pseudo-code for the kd-tree function rangeMax(Rectangle Q) that
efficiently answers these queries. For full credit, it should run in O(

√
n) time.

Hint: You may use whatever helper you like. Here is a suggestion.

int rangeMax(Rectangle Q, KDNode p, Rectangle cell)

You may assume that any geometric primitive involving a constant number objects (e.g.,
“is Q disjoint from cell”) can be computed in constant time.

(b) (5 points) How do we update node maxRating values with each insertion? Edit/Modify
the insertion helper for the kd-tree so that it both inserts a point pt with rating
pt.rating and efficiently updates the maxRating values for the affected nodes of the
tree.

Problem 4. (10 points) Suppose you are given a splay tree storing the keys X = {x1, x2, . . . , xn}.
Design a new splay-tree operation called bulkDelete(a, b). It is given two keys a, b ∈ X,
where a < b, and it deletes all the keys between a and b, exclusive, that is, it deletes {x ∈ X :
a < x < b}. (The elements a and b are not deleted.) For example, in Fig. 3(b), the operation
bulkDelete(4, 12) deletes the keys {5, 6, 7, 8, 10}.
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Figure 3: The bulkDelete operation in splay trees.
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Present an efficient algorithm for this operation. As with other splay-tree operations, you
are allowed to perform splay operations, either on the entire tree or on subtrees, and you can
access and modify nodes. However, you are not allowed to iterate through the tree or apply
recursive functions to the tree (other than calling splay).

You may present your algorithm either in pseudo-code or in English. You may assume that
a < b, and both keys appear in tree. Hint: It is possible to do this with a constant number
of splays, no matter how many entries are deleted.

Problem 5. (10 points) In this problem we consider an enhanced version of a skip list. As usual,
each node p stores a key, p.key, and an array of next pointers, p.next[]. To this we add a
parallel array p.span[], where p.span[i] stores the number of nodes that next[i] skips.

Present pseudo-code for a function Key getKth(int k), which returns the kth smallest key
in the entire skip list. For example, in Fig. 4, the call getKth(6) would return 19, since 19
is the sixth smallest key. You may assume that 1 ≤ k ≤ n, where n is the total number of
nodes in the skip list.
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Figure 4: Skip list with span values.

Your procedure should run in time expected-case time O(log n) (over all random choices),
but you don’t need to prove this.

Problem 6. (20 points) Recall that an extended binary search tree consists of internal nodes,
which have exactly two children, and external nodes, which have no children. A node’s
weight is defined to be the number of external nodes its subtree. (Internal nodes are not
counted.) For example, in Fig. 5 each node is labeled with its weight.
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Figure 5: Weight-balanced extended trees.

Given α ≥ 1, an external tree is α-balanced if for every internal node u,

1

α
≤ weight(u.left)

weight(u.right)
≤ α.
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In Fig. 5, the tree on the left is 2-balanced. But the tree on the right is not because there are
two siblings with weight ration 3 : 1, exceeding the allowed ratio of 2 : 1.

(a) (10 points) Prove that if an extended binary tree of total weight n ≥ 1 is 2-weight
balanced, then its height is at most log3/2 n.

(b) (5 points) Generalize the result from (a). Given an extended tree that is α-balanced for
some α ≥ 1, its height is at most logβ n for some β that depends on α. What is the
value of β as a function of α? (You do not not need to give the proof, just the formula).

(c) (5 points) True or False: Given a weight balanced tree with total weight n, if there is
a node at depth greater than log3/2 n, then some ancestor of this node is not 2-weight
balanced. Give your answer and a brief (1–2 sentence) justification.
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