
CMSC 420: Spring 2023

CMSC 420 (0201) - Final Exam

This exam is closed-book and closed-notes. You may use three sheets of notes (front and back).
Write all answers on the exam paper. You may use any algorithms or results given in class. If
you have a question, either raise your hand or come to the front of class. Total point value is 120
points. Good luck!

Problem 1. (30 points) Short answer questions. Unless requested, explanations are not required
but may be given to help with partial credit.

(a) (2 points) You have an inorder-threaded binary tree with n ≥ 1 nodes. As a function of
n, how many threads are there? (Include the null threads in the leftmost and righmost
nodes.)

(b) (2 points) You are given a leftist max-heap containing n ≥ 3 keys (priorities), where all
the keys are distinct. True or False: The node with the smallest key must be a leaf of
the tree.

(c) (4 points) What are the min and max number of keys in a 2-3 tree of height 2? (Re-
member, height is the number of edges from the root to the deepest leaf. Note that we
are asking about keys, not nodes.)

(d) (4 points) You have just performed an insertion into a 2-3 tree of height h ≥ 0. As a
function of h, what are the minimumm and maximum number of splits that might be
needed as a result?

(e) (6 points) You have just inserted a large number n of keys into a scapegoat tree (no
deletions). The next operation may be a find, insert, or delete. Which of the following
statements is true? (Select all that apply.)

(1) The next operation is find, the worst-case (not expected-case) time is O(log n)

(2) The next operation is insert, the worst-case (not expected-case) time is O(log n)

(3) The next operation is delete, the worst-case (not expected-case) time is O(log n)

(f) (4 points) In the memory management system described in class, which of the following
elements are stored in each allocated block? (Select all that apply)

(1) The header, containing the inUse bit, prevInUse bit, and size

(2) Links to the prev and next elements in the available-block list

(3) The size2 field at the end of the block

(4) The time field indicating when the block was most recently accessed

(g) (3 points) You have a splay tree with n keys. You perform a splay on an arbitrary key
x and then immediately following this, you perform a splay on the very next key in
ascending order. Which of the following is most accurate? (Select one.)

(1) The second splay takes O(1) time in the worst case.

(2) The second splay takes O(log n) time in the worst case.

(3) One of the two splays takes O(log n) time, but we cannot predict which.

1



(4) The second splay takes O(n) time in the worst case.

(h) (5 points) You have a Bloom filter that stores a set with a large number n of elements.
The table has m entries and there are k hash functions. Which of the following is true?
(Select all that apply.)

(1) The worst-case insertion time is (most accurately) O(1).

(2) The worst-case insertion time is (most accurately) O(m).

(3) The worst-case insertion time is (most accurately) O(k).

(4) Assuming k is fixed, increasing m (generally) decreases the chance of a false positive.

(5) Assuming m is fixed, increasing k (generally) decreases the chance of a false positive.

Problem 2. (10 points) Recall that the depth of a node in a binary tree is the number of edges
between this node and the root. In any binary tree, there are at most 2d nodes at depth d.
Given any AVL tree T and an integer d ≥ 0, we say that T is full at depth d if it has the
maximum possible number of nodes (namely, 2d) at depth d.

Prove that for any h ≥ 0, an AVL tree of height h is full at all depths from 0 up to ⌊h/2⌋.
(For example, the AVL tree in Fig. 1 has height 4, and it is full at levels 0, 1, and 2, but it is
not full at levels 3 and 4.)

Hint: Prove this by induction on the height of the tree.

11

13

1

5

9

15

63

4

16

2218

19

21

depth

0

1

2

3

4 (height = 4)

Figure 1: Full at depth.

Problem 3. (10 points) Consider the B-trees of order m = 4 shown in Fig. 2. When answering the
questions below, assume the following conventions. Key rotation/adoption (when possible)
takes precedence over splitting/merging. Second, when splitting a node, use the convention
given in the lecture, that the left node has ⌈m/2⌉ − 1 keys and the right node has ⌊m/2⌋
keys. (Hint: To save time, you need only redraw the portion of the tree that is affected by
the operations.)

(a) (5 points) Show the final tree that results after inserting the key 13.

(b) (5 points) Starting with the original tree, show the final tree that results after deleting
the key 42.

Problem 4. (15 points) In this problem we will build a suffix tree for S = "ababab$".

(a) (5 points) List the seven substring identifiers of S (from the last to the first).

2



Leaves are the same.

Just drawn vertically

to save space

27 --

2

--

6

8

9

12

14

15

20

21

24

5 10 17

29

31

33

36

38

--

35

40

42

--

49

--

47 --

-- --

------

--

Figure 2: B-Tree Operations.

(b) (10 points) Draw the suffix tree for S. Use the same form as in the lectures. When
drawing your tree, order the children of each node from left to right in the order a <
b < $. (Hint: Be sure to compress paths wherever possible.)

Problem 5. (15 points) You are given a collection of vertical line segments, where the lower
endpoints all lie on the x-axis and the upper endpoints lie in the first quadrant. This is
presented to you as a set P = {p1, . . . , pn} of the upper endpoints of these segments, where
each point p has coordinates (p.x,p.y).

In a segment-hitting query, we are given a horizontal ray that is shot to the left of a query
point q = (q.x, q.y), and the problem is to count the number of segments that are hit by this
ray (see Fig. 3).

q

Answer: 4

x

y
pi

Figure 3: Segment-hitting queries.

(a) (3 points) You are asked to design an efficient kd-tree-based data structure for answering
these queries. Explain what information is stored in the nodes of the tree, and what
assumptions you make about the tree’s structure (e.g., the choice of cutting dimensions
and cutting values, tree balance, etc.)

(b) (8 points) Present pseudocode for an efficient function that answers segment hitting
queries for a given query point (q.x q.y). Hint: Here is a suggested helper:

int segHit(Point q, KDNode p, Rect cell)

where q is the query point, p is the current node of the kd-tree, cell is the rectangular
cell associated with p.

(c) (4 points) What is your algorithm’s running time? Explain briefly. (You may use facts
proven in class about kd-trees.)

3



Problem 6. (20 points) Consider strings over the alphabet Σ = {0, 1, 2}. We say that a string is
monotone if its characters (in left to right order) are monotonically non-decreasing. That is,
given a string “s0s1 . . . sk−1”, we have si ≥ si−1, for 1 ≤ i ≤ k − 1.

For example, the strings "012", "02", and "22222" are all monotone because, when read from
left to right, the digit values never decrease. However, the string "00102" is not (because the
fourth character "0" is smaller than its predecessor "1").

The objective of this problem is, given a trie containing a set of strings, count the number
monotone strings in the set. Throughout, you may assume that the set of strings is prefix
free, that is, no string is a prefix of any other.

0 1 2

001 010 012

02

200

2021

222

root

Answer: 4 (for {001, 012, 02, 222})

Figure 4: Monotone Strings: Standard Trie.

(a) (10 points) Assume that the trie is represented in standard (uncompressed) form as
an extended tree. (See Fig. 4.) Each internal node p stores an array p.child[0..2].
(For example p.child[2] points to the subtree of strings whose next character is "2".)
External nodes store the final string as p.key. To distinguish between node types,
each node stores a boolean, p.isExternal, which is true for external nodes and false

otherwise. Let root denote the root of the tree.

Present pseudocode for an efficient function, countMonotone(root), which returns a
count of the number of monotone strings in the trie.

Hint: You may create any helper functions you need. You may use any standard string
utility functions. Your answer may be expressed either iteratively or recursively, your
choice.)

(b) (10 points) Repeat part (a), but now assuming that the trie is represented using a de
la Briandais trie (see Fig. 5). Each internal node p stores a single character as the
p.key and its first-child and next-sibling pointers, p.firstChild and p.nextSibling,
respectively. External nodes store the final string as p.key. To distinguish between node
types, each node stores a boolean, p.isExternal, which is true for external nodes and
false otherwise.

Problem 7. (20 points) In this problem, we will consider a variant of double hashing, called
priority hashing (or “prashing”). As with double hashing, we are given a hash table with m

4



001 012010 200 222

1 0 2

10

0 2

20

0 2

root

02

2

2

2021

1

Answer: 4 (for {001, 012, 02, 222})

Figure 5: Monotone Strings: de la Briandais Trie.

entries, denoted T [0..m−1]. Each key x is associated with two hash functions, h(x) and g(x),
and the probe sequence for key x consists of the indices

h(x), h(x) + g(x), h(x) + 2g(x), h(x) + 3g(x), . . .

where all indices are taken modulo m. This is exactly the same as standard double hashing.

The new twist is that each key x is also associated with a numeric priority function, p(x).
Whenever a collision occurs, we compare the priorities of the two keys. The key with the
higher priority gets to stay, and the other is “bumped”, that is, it must move to the next
position in its probe sequence. To simplify matter, assume that no two keys have the same
priority. Here is the insert function:

void insert(Key x) { // insert key x in table T[0..m-1]

insertHelper(x, h(x))

}

void insertHelper(Key x, int i) { // try to insert x at T[i]

i = i % m // wrap around

if (T[i] == null) { // empty?

T[i] = x // yes, insert here

} else {

Key y = T[i] // collision with y

if (p(x) < p(y)) { // x has lower priority?

insertHelper(x, i + g(x)) // bump x to its next position

} else { // x has higher priority?

T[i] = x // x takes y’s spot

insertHelper(y, i + g(y)) // bump y to its next position

}

}

}

(a) (10 points) Assume that we perform insertions, but no deletions. Present pseudocode
for an efficient function find(Key x), which searches for a (non-null) key x in the table.
If it is in the table, return true, and otherwise return false.

5



(b) (5 points) Assume that for all keys x, the values of g(x) and m are relatively prime (that
is, they share no common factors other than 1).

True or False: If the hash table has at least one empty entry, the insert function will
successfully insert x in the table (as opposed to looping infinitely).

Justify your answer. If true, give a clear argument as to why. If false, give a counterex-
ample showing that it can go into an infinite loop.

(c) (5 points) Repeat part (b), but this time g(x) and m need not be relatively prime.

Justify your answer. If true, give a clear argument as to why. If false, give a counterex-
ample showing that it can go into an infinite loop.

6


