
CMSC 420: Spring 2023

Homework 1: Basics, Union-Find, and Heaps

Handed out Thu, Feb 9. Due at the start of class, Tue, Feb 21. Solutions will be discussed in
class, and so no late submissions will be accepted. Submissions will be through Gradescope.

Problem 1. (10 points) This question involves the rooted trees shown in Fig. 1.
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Figure 1: Rooted trees.

(a) (3 points) Consider the rooted tree of Fig. 1(a). Draw a figure showing its representation
in the first-child/next-sibling form.

(b) (2 points) List the nodes Fig. 1(a) in preorder.

(c) (2 points) List the nodes Fig. 1(a) in postorder.

(d) (3 points) Consider the rooted tree of Fig. 1(b) given in its first-child/next-sibling form.
Draw a figure in its standard form.

Problem 2. (10 points) Consider the union-find trees shown in Fig. 2. The rank values for each
tree are indicated in blue next to each root.
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Figure 2: Rooted trees.

(a) (3 points) Show the array of parent indices for this set of trees and indicate which
elements of this array are set identifiers. (See Fig. 1(b) of the latex notes for Lecture 4
as an example of what we are looking for.)
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(b) (5 points) Show results after of performing the operations union(4,10) and union(16,9).
(For the sake of uniformity, use the same convention given in the lecture notes. When
performing union(s,t), if both trees have the same rank, link s as a subtree of t.)

(c) (2 points) Show the result of performing the operation find(5) on the data structure
after the union operations of part (b). In particular, indicate the resulting set identifier
returned by the find operation and show the final tree that results after path compression
is applied.

Problem 3. (10 points) Consider the two leftist heaps, H1 and H2, shown in Fig. 3.
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Figure 3: Leftist Heaps.

(a) (3 points) We have labeled each node of H1 with its npl value. Redraw H2 indicating
the npl values for each node.

(b) (7 points) Show the result of merging these two heaps together. Indicate the npl values
for each node. (You need only show the final tree, but the intermediate tree may be
given for partial credit.)

Problem 4. (10 points) A useful operation on trees is that of changing the root of the tree, while
maintaining all the existing connections. Suppose that you are given a rooted, multiway
tree presented using the first-child/next-sibling representation as shown below. The member
root points to the root node of the tree. For this problem, you may assume that the root is
non-null and it has at least one child.

class Tree { // a rooted multiway tree

class Node { // a node of the tree

String data;

Node firstChild;

Node nextSibling;

}

Node root; // the root node

...

}

You are asked to implement a function promote(Node v). This function is given a reference
to a node v, which is one of the children of the root node. Let r denote the root. This
function makes v the new root of the tree by (1) removing v as child of r and (2) making
r the first child of v (see Fig. 1). All the other children of v and all the other children of
r remain unchanged. If we think of the tree as an undirected graph, the graph structure is
unchanged. We just have a different node as the root.
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Figure 4: Promoting a child of the root to be the new root.

Present pseudocode for this function. Briefly explain how it works. For full credit, your
algorithm should run in time proportional to the number of children the root has. You do
not need to perform any error checking. You may assume that v is indeed one of the children
of the root node.

Problem 5. (10 points) In this problem we will analyze the amortized complexity of a new data
structure, called a double stack. The idea is to store two separate stacks within a single array
A. Let m denote the current size of this array. We split the array into two subarrays, one of
size s and the other of size m− s. The lower stack occupies entries A[0..s-1] and the upper
stack occupies entries A[s..m-1] (see Fig. 5(a)). Initially m = 4 and s = 2, but whenever we
expand the array, we will adjust these two values.

Both stacks grow (through pushes) and shrinks (through pops) within their respective subar-
rays. Each push or pop costs +1 units. We continue until we encounter one of two overflow
events:

Lower-stack overflow: A push to the lower stack, when it contains s entries (see Fig. 5(b)).

Upper-stack overflow: A push to the upper stack, when it contains m − s entries (see
Fig. 5(c)).
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Figure 5: The double stack.
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When either of these events occur, we trigger an expansion, which works as follows. Let nL and
nU denote the number of elements currently in the lower and upper stacks, respectively, just
before the push. We allocate a new array of size m′ = 3(nL+nU ), and we set s′ = (2nL)+nU .
We copy the elements of the lower stack into entries [0..nL − 1], and we copy the elements
of the upper stack into entries [s′..s′ + nU − 1]. Note that the number of available entries in
the lower stack is s′ − nL = nL + nU , and the number of available entries in the upper stack
is m′ − (s′ + nU ) = nL + nU . Thus, both stacks have an equal amount of space in which to
expand. After this, we push the new element onto the specified stack.

The cost of the expansion is nL + nU , accounting for the time to copy the elements from the
old array into the new array. To this we add +1 for the actual push operation itself.s

As an example, suppose that m = 12, s = 4, nL = 4 and nU = 2, and suppose that we perform
a push into the lower stack (see Fig. 6). This push will cause the lower stack to overflow.
We allocate a new array of size m′ = 3(nL + nU ) = 18, and we set s′ = (2nL) + nU = 10.
We then copy the four elements from the lower stack to entries [0..3] and we copy the two
elements of the upper stack to the entries [10..11]. At this point, both stacks can add another
nL + nU = 6 elements before they overflow. The cost for the expansion is nL + nU = 6 (since
this is the number of elements copied). Finally, we push the new item into entry [4] of the
lower stack at a cost of +1. Thus, the entire expansion has cost us 6 + 1 = 7 units.
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Figure 6: Example of double-stack expansion.

In this problem, we will derive the amortized running time of the double stack. As in class,
we will use a token-based argument. We start with the initial configuration, with m = 4,
s = 2, and an empty stack, so nL = nU = 0. We break the sequence of operations (pushes
and pops) into into subsequences called runs. The first run starts with the initialization and
ends with the first expansion. In general, each run starts just after the prior expansion and
runs until the next expansion. (The final run may not end in an expansion, but this is good,
since all the operations of this run cost just +1 each.)

Answer the following questions:

(a) (2 points) Suppose that we have just performed an expansion. Prior to the expansion
we had an array of size m, and our new array is of size m′ = 3(nL + nU ). As a function
of m′ (or if you prefer, nL and nU ), what is the minimum number of operations needed
until the next expansion occurs? (Briefly explain.)
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(b) (2 points) As a function of m′ (or if you prefer, nL and nU ), what is the worst-case
(maximum) cost for the next expansion? (Hint: This may depend on the relative sizes
of the two stacks.)

(c) (6 points) Using parts (a) and (b), derive a constant τ such that the amortized cost of
our expanding dual stack is at most τ . (Hint: Note that the worst-cases for (a) and
(b) may arise from different scenarios. For the sake of obtaining an upper bound on
the amortized cost, it is okay to simply use the worst-case for each, without regard for
whether they can both happen simultaneously. See Challenge Problem 2.)

Note: Challenge problems are not graded as part of the homework. The grades are recorded
separately. After final grades have been computed, I may “bump-up” a grade that is slightly below
a cutoff threshold based on these extra points. (But there is no formal rule for this.)

Challenge Problem 1: You have two friends, Alice and Bob. They have just implemented the
merge function for leftists heaps, but they each made one mistake. For each of the following,
indicate what the consequences are of their error.

(a) When computing the npl values for node, Alice consistently used the maximum of the
npl values of the two children (rather than the minimum). That is, she defined

npl(v) =

{
-1 if v = null,
1 + max(npl(v.left), npl(v.right)) otherwise.

Otherwise, her code is exactly the same as given in class.

Which of the following could be said of Alice’s program. Select one and justify your
answer.

(i) No difference at all. The tree structure is identical, the results are identical, and the
running time to perform the merge operation is O(log n).

(ii) The tree structure may differ, but it is still in valid heap order, and the running
time to perform the merge operation is O(log n).

(iii) The tree structure may differ, but it is still in valid heap order. However, the running
time to perform the merge operation may be worse than O(log n).

(iv) The tree structure may fail to be in heap order.

(b) Bob made a different mistake. Whenever he checks the npl values of two subtrees, he
always puts the subtree with the larger npl value on the right (rather than on the left).
Otherwise, his code is identical. (In particular, he merges trees along their rightmost
path.) Repeat part (a), but with this variant. Again, justify your answer.

Challenge Problem 2: It was noted in Problem 5(c) that the simple analysis based on the worst-
case scenarios for parts (a) and (b) cannot both occur. Present a more accurate analysis of
the amortized running time that corrects this shortcoming.
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General note regarding coding in homework assignments: A common question at the start
of the semester is “how much detail are you expecting?” You will figure this out as the semester
goes on, but here are some basic guidelines.

Prove vs. Show: If we ask you to “prove” something, we are looking for a well structured proof.
If you are applying induction, please be careful to distinguish your basis case(s) and indicate
what your induction hypothesis is. If we ask you to “show,” “explain,” or “justify”, we are
usually just expecting a brief English explanation. If you are unsure, please check.

Algorithm vs. Pseudocode: When we ask for an “algorithm” we are expecting a high-level
description of some computational process, usually in a combination of English and mathe-
matical notation (e.g., “sort the n keys and locate x using binary search”). For the latter, we
are expecting a more detailed step-by-step description that look much more like Java (e.g.,
“Node q = p.left”).

Remember that you are writing code to be read by a human, and not a compiler.
Please omit extraneous details, as long as the meaning is clear. For example, it is easier to
understand “i = ⌈n/m⌉” than “int i = (int) Math.ceil((double) n / (double) m))”.

Even if we do not explicitly ask for it, whenever you give an algorithm or pseudocode, you
should always provide a brief English explanation. This helps the grader understand
what your intentions are, and if there is a small error in your code, we can often use your
explanation to understand what your actual intentions were. Even if your solution is
technically correct, we reserve the right to deduct points if it is not clear to us
why it is correct.

Submission Instructions: Please submit your assignment as a pdf file through Gradescope. Here
are a few instructions/suggestions:

� Please read these instructions carefully. If your submitted work is difficult to read, you will
receive a grade of 0 for that problem, even if it is technically correct.

� You can typeset, hand-write, or use a tablet or any combination. We just need a readable
pdf file with all the answers. Be generous with figures and examples. If there is a minor error
in your pseudo-code, but the figure illustrates that you understood the answer, we can give
partial credit.

� When you submit, Gradescope will ask you to indicate which page each solution appears on.
Please be careful in doing this! It greatly simplifies the grading process for the graders,
since Gradescope takes them right to the page where your solution starts. If done incorrectly,
the grader may miss your answer, and you may receive a score of zero. (If so, you can appeal.
But hunting around for your answer is troublesome, and it is always best to keep the grader
in a good mood!) This takes a few minutes, so give yourself enough time if you are working
close to the deadline.

� Try to keep the answer to each subproblem (e.g. 5.2) on a single page. You can have multiple
subproblems on the same page, but Gradescope displays one one page at a time. It is easiest
to grade when everything needed is visible on the same page. If your answer spans multiple
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pages, it is a good idea to indicate this to alert the grader. (E.g., write “Continued” or “See
next page” at the bottom of the page.)

� Most scanners (including your phone) do not take very good pictures of handwritten text.
For this reason, write with dark ink on white paper. Use an image-enhancing app such as
CamScanner or Genius Scan to improve the contrast.

� Writing can bleed through to the other side. To be safe, write on just one side of the paper.

� Students often ask me what typesetting system I use. I use LaTeX for text. This is commonly
used by academicians, especially in math, CS, and physics, and is worth taking the time to
learn if you are thinking about doing research. If you use LaTeX, I would suggest downloading
an IDE, such as TeXnicCenter or TeXstudio. I draw my figures using a figure editor called
IPE for drawing figures.
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