
CMSC 420: Spring 2023

Homework 2: Search Trees

Handed out Tue, Feb 28. Due Tue, Mar 7, 9:30am (that is, by the start of class).

Important! Solutions will be discussed in class right after the due date, so no late submissions
will be accepted. Turn in whatever you have completed by the due date.

Problem 1. (8 points) Perform the following operations on the AVL trees shown in Fig. 1. In
each case, show the final tree and list (in order) all the rebalancing operations performed
(e.g., “rotateLeftRight(7)”). (We only need the final tree, but intermediate results may
be shown for the sake of assigning partial credit.) Draw your final tree as in Fig. 1(b) from
Lecture 7. Show the balance factors at each node. (Don’t bother giving the heights.)
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Figure 1: AVL-tree operations.

(a) (4 points) Show the result of executing the operation insert(5) to the tree of Fig. 1(a).

(b) (4 points) Show the result of executing the operation delete(10) to the tree of Fig. 1(b).

Problem 2. (8 points) Consider the AA trees shown in Fig. 2.
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Figure 2: AA-tree operations.

(a) (4 points) Show the result of executing the operation insert(1) to the tree on the left.

(b) (4 points) Show the result of executing the operation delete(5) to the tree on the right.

In each case, show the final tree and list (in order) all the rebalancing operations (skew, split,
and update-level) that result in changes to the tree (e.g., “skew(13)”). Intermediate results
may be shown for the sake of partial credit.
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Draw the tree as in Figs. 6 and 7 from Lecture 9. Indicate both the levels and distinguish
red from black nodes. You do not need to color the nodes—a dashed line coming in from the
parent indicates that a node is red. (Do not bother drawing nil.)

Problem 3. (6 points) Recall the minimal AVL trees from Lecture 7. Formally, we define T0

and T1 as shown in Fig. 3(a), and for any h ≥ 2, Th consists of a root with Th−1 as its left
subtree and Th−2 as its right subtree (see Fig. 3(b)). Suppose we label the nodes in sequence
⟨1, 2, 3, 4, 5, . . .⟩ according to an inorder traversal (see Fig. 3(c)). Observe that the nodes along
the leftmost chain of the tree will take on values from the Fibonacci sequence. Establish this
by giving a (formal) proof for the following theorem.
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Figure 3: Inorder labeling of a Fibonacci-based trees.

Theorem: For any h ≥ 0, if the nodes of Th are labeled according to their position in an
inorder traversal of the tree (starting with 1), then the labels along the leftmost chain
of tree (from leaf to root) generate the Fibonacci sequence

⟨F (2), F (3), F (4), F (5), . . . , F (h+ 2)⟩,

where F (h) denotes the hth Fibonacci number.

Hint: If it helps, you may assume the result proved in class about these trees, namely that
Th has F (h+ 3)− 1 nodes. (In the lecture notes, we called this N(h).)

Problem 4. (12 points) Suppose that you are implementing the 2-3 tree as described in class, and
you have the node structure shown below. Each node has an additional parent link. As in
the lecture, we will “cheat” and allow nodes to have 4 children, but this is only temporarily
allowed. Since they do not matter for this exercise, we will only store keys, no values. We
also provide two constructors, one for 2-nodes and one for 3-nodes (see Fig. 4).

class Node {

int nChild // number of children (1 through 4)

Node parent // parent of this node (null if root)

Node[] child // a 4-element array of child references

Key[] key // a 3-element array of keys

// constructors for 2-nodes and 3-nodes

Node(Node par, Node u, Key x, Node v)

Node(Node par, Node u, Key x, Node v, Key y, Node w)

}
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Figure 4: Constructors for 2-3 nodes.

(a) (3 points) Present pseudocode for a function Node leftSib(Node p), which returns a
reference to the left sibling of p. If p has no left sibling, it returns null. Your function
should run in constant time. You may assume that all nodes other than p are valid 2-3
nodes (that is, they have 2 or 3 children.) Hint: Be sure to avoid dereferencing null

pointers or indexing outside of array bounds.

(b) (3 points) Repeat (a) but now for Node rightSib(Node p), which returns the right
sibling.

(c) (6 points) Present pseudocode for a function Node merge(Node p). It is given a node
p that contains only 1 child (and no keys). If it has a left sibling and this sibling is
a 2-node, it merges its contents with this sibling node, creating a new node, which it
returns. Otherwise, if it has a right sibling, and this sibling is a 2-node, it does the same
with this sibling (see Fig. 5). Otherwise, it returns null. You may assume that all nodes
other than p are valid 2-3 nodes (that is, they have 2 or 3 children.) Do not worry
about updating the parent node. (We’ll leave that for a future exercise.)
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Figure 5: The function merge(p).

Problem 5. (16 points) Alice and Bob want to test their implementation of a standard (unbal-
anced) binary search tree. They know that the tree will perform badly if keys are inserted
in sorted order, and it will perform well (in expectation) if the keys are inserted in random
order. They decide to analyze the performance of one more insertion order.

Let us assume that the number of keys n is chosen to be a perfect square, that is, n = k2 for
some k ≥ 1. They first write the keys out row-by-row in a matrix. For example, here is what
they would generate for n = 16: 

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
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Then, they insert the keys by reading down the columns, working from right to left. In the
above example, the insertion order is ⟨4, 8, 12, 16, 3, 7, 11, 15, 2, 6, 10, 14, 1, 5, 9, 13⟩.
Answer the following questions based on Alice and Bob’s insertion process. Throughout,
you may assume that the number of nodes n is a strictly positive perfect square.

(a) (3 points) Draw the final binary search tree that results for the above example involving
n = 16 keys.

(b) (3 points) What is the height of the resulting tree? (Express your answer as a function
of n.) Hint: To avoid being off by 1, recall the definition of height from the lecture
notes. A tree with a single node has height 0, not 1.

(c) (4 points) Letting h denote the height of the final tree. Give a formula d(i), which for
0 ≤ i ≤ h indicates the number of nodes at depth i in the resulting tree. Express your
answer as a function of n and i. Hint: Recall the definition of depth from the lecture
notes. The root is at depth 0, and depths increase from there.

(d) (6 points) Under the reasonable assumption that the time needed to insert a node at
depth i is i + 1, what is the total time needed to insert all n keys in the tree? Express
your answer as a function of n in closed form (no summations or recurrences). For full
credit, give the exact formula. For partial credit, give an asymptotically tight bound.
Hint: It may be useful to recall the summation formulas from the CMSC420 Reference
Guide. Show how you derived your answer.

Challenge Problem 1: Augment your answer to Problem 4(c) by presenting pseudocode that not
only creates the new merged node, but (assuming that the result is not null) also updates
the contents of the parent node. Note that the parent’s degree decreases by one, and so it
may become a 1-node.
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Figure 6: The complete function merge(p).

Challenge Problem 2: In programming languages like C and C++, when a data structure is
deallocated, its nodes must be explicitly deallocated one by one. Given a node p, the operation
delete(p) deallocates the node, returning its memory block to the system. The simplest way
to do this is to perform a postorder traversal of the tree, and delete nodes as you are backing
out.

Performing a postorder traversal requires the use of system memory in the form of the recur-
sion stack. If the tree is really huge, you may not have enough memory to store the recursion
stack. Ironically, you may run out of memory in the process of trying to free up memory!
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Describe a method for deleting all the nodes of a standard binary tree that uses only O(1)
additional working storage. (Note that using recursion, allocating arrays or other data struc-
tures, and allocating new nodes all contribute to your working storage.)

Your binary tree is absolutely minimal. Each node just has a left child link and a right child
link, and nothing else (no keys, no values, no parent links.) Your algorithm should run in
O(n) time, where n is the number of nodes in the tree. Hint: You are allowed to modify the
contents of the tree.
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