
CMSC 420: Spring 2023

Homework 3: kd-Trees, Splay Trees, and More

Handed out Tue, Apr 4. Due Tue, Apr 11, 9:30am (that is, by the start of class).

Note: Solutions will be discussed in class, so no late submissions will be accepted.

Problem 1. (10 points) Consider the kd-tree shown in the figure below. Assume a “standard” kd-
tree where the cutting dimensions alternates between x and y with each level. (Intermediate
results are not required, but may be given for partial credit.)

(40, 10)

(20, 50)

(10, 30)

(20, 50) (90, 40)

(70, 30)
(80, 60)

(70, 30) (90, 40)
(50, 70)

(80, 60)

(40, 10)

(10, 30)

(50, 70)

(60, 90)

0 20 40 60 80 100

0

20

40

60

80

100
(60, 90)

(a) (5 points) Show the final tree after the operation insert((80,20)). You need only show
the tree, not the spatial subdivision.

(b) (5 points) Starting with the original tree, show the final tree after delete((40,10)).
Indicate which nodes were used as replacement nodes.

Problem 2. (10 points) Consider the splay trees shown in the figure below. In both cases, apply
the exact algorithms described in the lecture notes (Lecture 13).

(a) (5 points) Show the steps involved in operation insert(7) for the tree on the left.

5

19

6

17

3

1

12

4 8

10

15

11

17

3

1

12

4

8

delete(15)

10

15

6

19

insert(7)

(b) (5 points) Show the steps involved in operation delete(15) for the tree on the right.

1



In both cases, in addition to the final tree, show the result after each splay. Indicate which
node was splayed on and the tree that resulted after splaying. (Intermediate results may be
shown for partial credit.)

Problem 3. (10 points) Suppose you are given a kd-tree storing a set of points in R2. Recall from
Lecture 10 that the delete operation on standard kd-trees makes use of the helper function,
findMin(Node p, int i), which returns the point in node p’s subtree that has the smallest
ith coordinate (i = 0 for x and i = 1 for y). Let us assume that your kd-tree satisfies the
“standard assumptions”, namely that the cutting dimensions alternate between x and y with
each level of the tree, and for each internal node p, there are an equal number of points in its
left and right subtrees.

Under these assumptions, prove that for any node p, the running time for findMin(Node p,

int i) is O(
√
m), where m denotes the number of points in p’s subtree.

Hints: Your analysis is asymptotic, meaning that you should focus on the case when m is
very large. You may use fact that, given any positive constants a, b, and c, the recurrence
T (n) = aT (n/b) + c solves to O(nlogb a), for all sufficiently large n.

Problem 4. (10 points) You are given a set P = {p1, . . . , pn} of n points in R2 stored in a
“standard” point kd-tree, as given in Lecture 10.

You are given a query point q = (qx, qy), and the objective of an upper-right query is to
compute the the bottommost point (that is, the point having the minimum y-coordinate)
among all the points of P whose x-coordinates are greater than or equal to qx and whose y-
coordinates are greater than or equal to qy (see the figure below). If there is no such point, the
query returns null. To avoid messy edge cases, you may assume that there are no duplicate
x- or y-coordinates among the points (including q).

p8

p1

p2

p3

p4

p5

p6

p7

p9

(a) (b)

p8

p1

p2

p3

p4

p5

p6

p7

p9

q

upperRight(q) = p9

(c)

q

si

ti

Present pseudo-code for an algorithm, Point upperRight(Point q) for answering upper-
right queries given a kd-tree storing the points of P .

For full credit, your query algorithm should run in O(
√
n) time, but you do not need to prove

this.

Hint: As usual, create a recursive helper function and explain how it is initially invoked.
This is similar to nearest-neighbor searching in the sense that you will keep track of each
node’s cell and the best point seen so far. For efficiency, you should visit subtrees in an
efficient order and avoid visiting nodes that cannot possibly contribute to the final answer.

2



Problem 5. (10 points) In this problem we consider an enhanced version of a skip list. As usual,
each node p stores a key, p.key, and an array of next pointers, p.next[]. To this we add an
array p.span[] which is parallel to p.next[]. This array is defined as follows. If p.next[i]
refers to a node q, then p.span[i] contains the number of nodes from p to q (at level 0) of
the skip list.

For example, in the figure below, the node p (with key “8”) the link p.next[2] (shown in
blue) jumps 3 nodes forward to the node with key 13, and so p.span[2] = 3.

25

13

2 11 22
10 19

head tail

∞

0

1

2

3

4

5 9

3

4

4

2

1 1 1 1 1

1

1 1 1

2

3

3

1

1
8

7

2

2

2

p

range(9, 24) = 5

Assuming this enhanced structure, present pseudo-code for a function int range(Key lo,

Key hi), which returns a count of the number of nodes in the entire skip list whose key values
are greater than or equal to lo and less than or equal to hi. For example, in the figure above,
the operation range(9,24) would return 5, since there are five items in this interval (namely,
10, 11, 13, 19, and 22).

Assuming that the skip list contains a total of n keys, your procedure should run in time
expected-case time O(log n) (over all random choices), irrespective of the number of elements
that lie within the range. Briefly explain how your function works.

Hint: It may help to approach this by first solving the simpler problem to answering semi-
infinite range counting queries, namely, counting all the points whose key is ≤ x.

Challenge Problem: You are given a set R = {r1, . . . , rn} of n disjoint rectangles in the R2.
Each rectangle ri is represented by a pair of points si is the lower left corner and ti is the
upper right corner. You may store this information in any data structure you choose with
the purpose of answering the following horizontal ray-shooting queries efficiently.

You are given a query point q = (qx, qy) which is guaranteed to lie outside of all of these
rectangles. You shoot an infinite ray horizontally to the right of q. Your objective is to
determine whether this ray hits any of the rectangles. To avoid messy edge cases, you may
assume that there are no duplicate x- or y-coordinates among the points (including q).

Describe your data structure (what is stored? how is it organized?), and explain how to
answer these horizontal ray-shooting queries from it. For full credit, your data structure
should use O(n) storage, and queries should be answered in O(

√
n) time. You may express

your answer either in plain English or using pseudo-code (your choice), as long as it is clear
and unambiguous how your algorithm can be implemented. Justify the correctness of your
solution.

Hint: It is possible to reduce this problem to the kd-tree data structure from Problem 4, but
you will need to augment the data structure with additional information.

3


