
CMSC 420: Spring 2023

Practice Problems for the Final Exam

Our final exam will be held on Mon, May 15, 4-6pm in IRB 0324, the Antonov Auditorium.
It will be closed-book, closed-notes, but you will be allowed three sheets of notes, front and back.

Disclaimer: The exam will be comprehensive, emphasizing material in the latter half of the
semester. These practice problems have been extracted from old homework assignments and exams.
Material changes from semester to semester. These do not necessarily reflect the actual coverage,
difficulty, or length of the midterm exam.

Problem 0. Since the exam is comprehensive, please look back over the previous homework as-
signments, the two midterm exams, and the practice problems for both midterms. You should
expect at least one problem that involves tracing through an algorithm or construction given
in class.

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) You have an inorder-threaded binary tree with n nodes. Let u be an arbitrary non-leaf
node in this tree. True or False: There must be at least one thread that points into u.

(b) Let T be an extended binary search tree (that is, one having internal and external
nodes). You visit the nodes of T according to one of the standard traversals (preorder,
postorder, or inorder). Which of the following statements is necessarily true? (Select all
that apply.)

(1) Preorder traversal : All the internal nodes appear before any of the external nodes

(2) Inorder traversal : Internal and external nodes alternate with each other

(3) Postorder traversal : The first node visited is an external node

(4) Postorder traversal : The last node visited is an internal node

(c) Given a binary max-heap with n entries (n ≥ 3), you want to return the third largest
item in the heap (without modifying its contents). What is the minimum number of
heap entries that you might need to inspect to be certain that the third largest item is
among them?

(d) When we delete an entry from a simple (unbalanced) binary search tree, we sometimes
need to find a replacement key. Suppose that p is the node containing the deleted key.
Which of the following statements are true? (Select all that apply.)

(1) A replacement is needed whenever p is the root

(2) A replacement is needed whenever p is a leaf

(3) A replacement is needed whenever p has two non-null children

(4) It is best to take the replacement exclusively from p’s right subtree

(5) At most one replacement is needed for each deletion operation

(e) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

1



(f) Repeat the previous question in the case of deletion. (Give your answer as an asymptotic
function of n.)

(g) What are the min and max number of nodes in a 2-3 tree of height 2? (Remember,
height is the number of edges from the root to the deepest leaf.)

(h) You have just performed a deletion from a 2-3 tree of height h. As a function of h, what
is the maximum number of key-rotations (adoptions) that might be needed as a result?

(i) The AA-tree data structure has the following constraint: “Each red node can arise only
as the right child of a black node.” Which of the two restructuring operations (skew and
split) enforces this condition?

(j) You have just inserted a key into an AA tree having L levels. As a function of L, what
is the maximum number of skew operations that might be needed as a result? (Here we
are only counting skew operations that have an effect on the structure, in the sense that
a rotation is performed.)

(k) Splay trees are known to support efficient finger search queries. What is a “finger search
query”?

(l) In class, we mentioned that when using double hashing, it is important that the second
hash function g(x) should not share any common divisors with the table size m. What
might go wrong if this were not the case?

(m) Hashing is widely regarded as the fastest of all data structures for basic dictionary
operations (insert, delete, find). Give an example of an operation that a tree-based
search structure can perform more efficiently than a hashing-based data structure, and
explain briefly.

(n) In the (unstructured) memory management system discussed in class, each available
block of memory stored the size of the block both at the beginning of the block (which
we called size) and at the end of the block (which we called size2). Why did we store
the block size at both ends?

(o) You build a suffix tree for a string having m characters (including the "$" at the end).
What is the maximum number of internal nodes in the tree?

(p) You build a Bloom filter for a set X that uses k hash functions. Each hash function can
be computed in O(1) time. You query the data structure on an element x. Which of
the following hold? (Select all that apply.)

(1) If x ∈ X, the data structure will correctly report this

(2) If x ∈ X, the data structure may or may not correctly report this

(3) If x /∈ X, the data structure will correctly report this

(4) If x /∈ X, the data structure may or may not correctly report this

(5) The query is answered in O(k) worst-case time

(6) The query is answered in O(k) expected time (but it might take longer)

Problem 2. This problem involves an input which is a binary search tree having n nodes of height
O(log n). You may assume that each node p has a field p.size that stores the number of
nodes in its subtree (including p itself). Here is the node structure:

2



class Node {

int key // key

Node left, right // children

int size // number of entries in this subtree

}

(a) Present pseudocode for a function printMaxK(int k), which is given 0 ≤ k ≤ n, and
prints the values of the k largest keys in the binary search tree (see, for example, Fig. 1).

8

5

11

6

4

14

7

3

1

10

15

25

26

21

19

18 printMaxK(8) = 〈11, 14, 15, 18, 19, 21, 25, 26〉

printMaxK(2) = 〈25, 26〉

printOdd() = 〈1, 4, 6, 8, 11, 15, 19, 25〉

16

5

3

11

4

10

5

4

1 1

2

4

1

1

p.key
p.size

3

Figure 1: The functions printMaxK and printOdd.

You should do this in a single pass by traversing the relevant portion of the tree. It
would be considered cheating to store all the elements of in a list, and then just print
the last k entries of the list.

For fullest credit, the keys should be printed in ascending order, and your algorithm
should run in time O(k + log n) (see part (b) below). Briefly explain your algorithm.

Hint: I would suggest using the helper function printMaxK(Node p, int k), where k

is the number of keys to print from the subtree rooted at p.

(b) Derive the running time of your algorithm in (a).

(c) Give pseudocode for a function printOdd(), which does the following. Let ⟨x1, x2, . . . , xn⟩
denote the keys of the tree in ascending order, this function prints every other key, namely
⟨x1, x3, x5, . . .⟩ (see Fig. 1).

Again, you should do this in a single pass by traversing the tree. (For example, it would
be considered cheating to traverse the tree and construct a list with all the entries, and
then only print the odd entries of your list.) Your function should run in time O(n).
Briefly explain your algorithm.

Problem 3. In this problem you will write a program to check the validity of an AVL tree. The
node structure is given below. All members are public.

class AVLNode {

public int key // key

public int height // height of this subtree

public AVLNode left, right // left and right children

}

3



In order to be valid, every node p of the tree must satisfy the following conditions (see Fig. 2):

� p.height is correct given the heights of its children. (Recall: height(null) == -1.)

� The absolute height difference between p’s left and right subtrees is at most 1

� An inorder traversal of the tree encounters keys in strictly ascending order

16
0

1

14

5

9

10

63

4

3

12

1 00

00

Valid AVL Tree

3

14

5

9

10

63

4

3

22

1 11

00

Invalid AVL Tree

Duplicate keys! Invalid height!

Imbalanced subtrees!

(should be 0)

Figure 2: Valid and invalid AVL trees.

Problem 4. Assume that you are given a kd-tree storing a set P of n points in R2 that satisfies the
standard assumptions. (That is, the cutting dimension alternates between x and y, subtrees
are balanced, and the tree stores a bounding box bbox containing all the points of P .)

3.6

5

7

4

−2

2.5
3

9

−1
5

Ans = 4 + 7 + 5− 2 = 14

R

Figure 3: Weighted range query.

(a) In a standard range-counting query, we want to count the number of points in the range.
Suppose that each point pi ∈ P has an associated real-valued weight wi. In a weighted
orthogonal range query, we are given a query rectangle R, given by its lower-left corner
rlo and upper-right corner rhi, and the answer is the sum of the weights of the points
that lie within R (see Fig. 3(b)). If there are no points in the range, the answer is 0.

Explain how to modify the kd-tree (by adding additional fields to the nodes, if you
like) so that weighted orthogonal range queries can be answered efficiently. Based on
your modified data structure, present an efficient algorithm in pseudo-code for answering
these queries and explain. (For full credit, your algorithm should run in O(

√
n) time).

You may handle the edge cases (e.g., points lying on the boundary of R) however you
like. Hint: You may use whatever helper function(s) you like, but I would suggest using:

double weightedRange(Rectangle R, KDNode p, Rectangle cell)

where p is the current node in the kd-tree, cell is the associated cell.

4



(b) Briefly analyze the running time of your algorithm, assuming that the tree is balanced.
(You may apply/modify results proved in class.)

Problem 5. Assume that you are given a kd-tree storing a set P of n points in R2 that satisfies the
standard assumptions. (That is, the cutting dimension alternates between x and y, subtrees
are balanced, and the tree stores a bounding box bbox containing all the points of P .)

In a fixed-radius nearest neighbor query, we are given a point q ∈ Rd and a radius r > 0.
Consider a circular disk centered at q whose radius is r. If no points of P lie within this disk,
the answer to the query is null. Otherwise, it returns the point of P within the disk that is
closest to q (see Fig. 4). Present (in pseudo-code) an efficient kd-tree algorithm that answers
such a query.

q

r

p4

p2

p3

p1

p9

p6p7

p8

Answer: p3

p5

p4

p2

p3

p1

p9

p6p7

p8

q
r

Answer: null

p5

Figure 4: Fixed-radius nearest-neighbor query.

Hint: You may use whatever helper function(s) you like, but I would suggest using:

Point frnn(Point q, double r, KDNode p, Rectangle cell, Point best)

where p is the current node in the kd-tree, cell is the associated cell, and best is the best
point seen so far.

You do not need to analyze your algorithm’s running time, but explain it briefly. Your
algorithm should not waste time visiting nodes that cannot possibly contribute to the answer.

Problem 6. Define a new treap operation, expose(Key x). It finds the key x in the tree (throwing
an exception if not found), sets its priority to −∞ (or more practically Integer.MIN VALUE),
and then restores the treap’s priority order through rotations. (Observe that the node con-
taining x will be rotated to the root of the tree.) Present pseudo-code for this operation.

Problem 7. Suppose that you are given a treap data structure storing n keys. The node structure
is shown in Fig. 5. You may assume that all keys and all priorities are distinct.

(a) Present pseudocode for the operation int minPriority(Key x0, Key x1), which is
given two keys x0 and x1 (which may or may not be in the treap), and returns the
lowest priority among all nodes whose keys x lie in the range x0 ≤ x ≤ x1. If the treap
has no keys in this range, the function returns Integer.MAX VALUE. Briefly explain why
your function is correct.

For example, in Fig. 5 the query minPriority("c", "g") would return 2 from node
"e", since it is the lowest priority among all keys x where "c" ≤ x ≤ "g".

5



1
k

2
e

4
o

8
m

5
f

6
h

3
b

10
a

9
c

7
w

11
s

priority

key

class TreapNode {

Key key // key

int priority // priority

TreapNode left // left child

TreapNode right // right child

}

Figure 5: Treap node structure and an example.

(b) Assuming that the treap stores n keys and has height O(log n), what is the expected-case
running time of your algorithm? (Briefly justify your answer.)

Problem 8. In this problem we will build a suffix tree for the string S = baabaabababaa$.

(a) List the substring identifiers for the 14 suffixes of S. For the sake of uniformity, list them
in order (either back to front or front to back). For example, you could start with “$”
and end with the substring identifier for the entire string.

(b) List the substring identifiers again together with their indices (0 through 13), but this
time in alphabetical order (where "a" < "b" < "$").

(c) Draw a picture of the suffix tree for S. For the sake of uniformity, when drawing your
tree, use the convention of Fig. 7 in the Lecture 17 LaTeX lecture notes. In particular,
label edges of the final tree with substrings, index the suffixes from 0 to 13, and order
subtrees in ascending lexicographical order.

Problem 9. Suppose you have a large span of memory, which starts at some address start and
ends at address end-1 (see Fig. 6). (The variables start and end are generic pointers of type
void*.) As the dynamic memory allocation method of Lecture 15, this span is subdivided
into blocks. The block starting at address p is associated with the following information:

� p.inUse is 1 if this block is in-use (allocated) and 0 otherwise (available)

� p.prevInUse is 1 if the block immediately preceeding this block in memory is in-use.
(It should be 1 for the first block.)

� p.size is the number of words in this block (including all header fields)

� p.size2 each available block has a copy of the size stored in its last word, which is
located at address p + p.size - 1.

(For this problem, we will ignore the available-list pointers p.prev and p.next.)

In class, we said that in real memory-allocation systems, blocks cannot be moved, because they
may contain pointers. Suppose, however, that the blocks are movable. Present pseudo-code
for a function that compacts memory by copying all the allocated blocks to a single contiguous
span of blocks at the start of the memory span (see Fig. 6). Your function compress(void*

start, void* end) should return a pointer to the head of the available block at the end.
Following these blocks is a single available block that covers the rest of the memory’s span.

6



0
1

5
0

5
0

0
1

2
0

0
1

8
0

8
0

1
3
0

0
1

5
0

5
0

0
1

1
8
0

1
8
0

Initial:

50 20 80 5030

180

start end

0
1

2
0

1

20

1
1

2
0

20

1
1

2
0

20
1

3
0

30
1

return

compact(start, end)

Figure 6: Memory compactor.

To help copy blocks of memory around, you may assume that you have access to a function
void* memcpy(void* dest, void* source, int num), which copies num words of memory
from the address source to the address dest.

Problem 10. This problem involves a data structure called an erasable stack. This data structure
is just a stack with an additional operation that allows us to “erase” any element that is
currently in the stack. Whenever we pop the stack, we skip over the erased elements, re-
turning the topmost “unerased” element. The pseudocode below provides more details be
implemented.

class EStack { // erasable stack of Objects

int top // index of stack top

Object A[HUGE] // array is so big, we will never overflow

Object ERASED // special object which indicates an element is erased

EStack() { top = -1 } // initialize

void push(Object x) { // push

A[++top] = x

}

void erase(int i) { // erase (assume 0 <= i <= top)

A[i] = ERASED

}

Object pop() { // pop (skipping erased items)

while (top >= 0 && A[top] == ERASED) top--

if (top >= 0) return A[top--]

else return null

}

}

Let n = top + 1 denote the current number of entries in the stack (including the ERASED

entries). Define the actual cost of operations as follows: push and erase both run in 1 unit

7



of time and pop takes k + 1 units of time where k is the number of ERASED elements that
were skipped over.

(a) As a function of n, what is the worst-case running time of the pop operation? (For
fullest credit, make your bound as tight as possible.) Justify your answer.

(b) Starting with an empty stack, we perform a sequence of m push, erase, and pop oper-
ations. Give an upper bound on the amortized running time of such as sequence. You
may assume that all the operations are valid and the array never overflows. (For fullest
credit, make your bound as tight as possible.) Justify your answer.

(c) Given two (large) integers k and m, where k ≤ m/2, we start from an empty stack,
push m elements, and then erase k elements at random, finally we perform a single pop
operation. What is the expected running time of the final pop operation. You may
express your answer asymptotically as a function of k and m.

In each case, state your answer first, and then provide your justification.

Problem 11. You are designing an expandable hash table using open addressing. Let m denote
the current table size. Initially m = 4. Let us make the ideal assumption that each hash
operation takes exactly 1 time unit. After each insertion, if the number of entries in the table
is greater than or equal to 3m/4, we expand the table as follows. We allocate a new table
of size 4m, create a new hash function, and rehash all of the elements from the current table
into the new table. The time to do this expansion is 3m/4.

(a) Derive the amortized time to perform an insertion in this hash table (assuming that m
is very large). State your amortized running time and explain how you derived it. (For
fullest credit, your running time should as tight as possible.)

Hint: The amortized time need not be an integer.

(b) One approach to decrease the amortized time is to modify the table expansion factor,
which in this case is 4. In order to reduce the amortized time, should we increase or
decrease this factor? If you make this adjustment, what negative side effect (if any)
might you observe regarding the space and time performance of the data structure?
Explain briefly.

‘

8


