
CMSC 420: Spring 2023

Programming Assignment 0: Adjustable Stack

Handed out: Tue, Jan 31. Due: Wed, Feb 8 (11:59pm).

Overview: This is a start-up project designed to acquaint you with the programming/testing
environment and submission process we will be using this semester. This will involve only a
small bit of data structure design and implementation.

The Adjustable Stack: In this assignment we will implement a generalization of the simple stack
data structure, but along the way we will introduce a useful concept, called a locator. Like
the standard Java stack data structure, our data structure is generic and stores objects of a
given type, called Element.

public class AdjustableStack<Element> { ... }

It implements the standard stack operations of push, pop, and peek (which returns the top
entry without removing it). In addition, we allow entries within the stack to be adjusted
by either promotion or demotion. Promoting moves an entry one position closer to the top
by swapping it with the entry immediately above it. Demoting moves it down one position
by swapping it with the entry just below it. We will also support a depth operation, which
returns how far an entry is from the top.

In order to implement these last three operations, we need an efficient mechanism for referring
to specific entries of the stack. (Java provides a search operation, but this is very slow, since
it involves searching the entire stack contents.) We do this using an object called a locator.
A locator identifies an specific entry in the stack. This is implemented as a public class,
called Locator, that is internal to the AdjustableStack class. Whenever an object is pushed
into the stack, the push operation returns a locator referring to this entry. The promotion,
demotion, and depth operations are each given a locator referencing the object on which to
apply the operation.

How do we do this? Let’s assume we implement the stack in the standard manner as an array
of entries, along with an index top, which indexes the top entry of the stack. When an item
is pushed on the stack, we create a new locator object, which stores the index of the entry in
the stack array. Then, when we wish to promote or demote an entry, we provide the locator
in order to identify this entry. An skeletal example is shown below.

public class AdjustableStack<Element> {

public class Locator {

private int index;

}

public Locator push(Element element) { ... }

public void promote(Locator loc) { ... }

}

Here is an example of how this might be used. We create a new stack of strings, push three
entries, and then we promote the middle entry.

1



AdjustableStack<String> stack = new AdjustableStack<String>();

AdjustableStack<String>.Locator loc1 = stack.push("cat"); // stack: cat

AdjustableStack<String>.Locator loc2 = stack.push("dog"); // stack: dog cat

AdjustableStack<String>.Locator loc3 = stack.push("pig"); // stack: pig dog cat

stack.promote(loc2); // promote dog. New stack: dog pig cat

The contents of the stack after the three pushes is shown in Fig. 1(a). The result after
promoting "dog" is shown in Fig. 1(b). Observe that when "dog" and "pig" exchange places
their associated locators are updated accordingly.

cat

dog

pig

0

1

2

3

4

top

0

1

2

loc1

loc2

loc3

cat

dog

pig
0

1

2

3

4

0

2

1

loc1

loc2

loc3

promote(loc2)

cat

dog

pig
0

1

2

3

4

0

2

1

loc1

loc2

loc3

(a) (b) (c)(c)

top

Figure 1: Locators and promotion.

You might wonder, why do we go through the extra effort of creating this special Locator
class. Couldn’t the push operator simply return the integer index of the newly inserting
entry? The problem is that as other entries are promoted and demoted, and given items
position in the stack will change dynamically. (As shown in Fig. 1(b), the locator for "pig"
had to be changed, even though it was not named in the promotion opertion.) The purpose
of the locator is to keep track of where the item is at all times.

But, you may see an obvious problem. If an entry’s position is changed because one of its
neighbors is promoted, how to we find its associated locator? To make this work efficiently,
in addition to the locator referencing an entry in the stack, we need each stack entry to
reference the associated locator. This way, when the entry moves, we can update the locator.
This is illustrated in Fig. 1(c). You could do this in one of two ways. You could have two
parallel arrays, one an array of type Element, containing the stack contents, and the other
of type Locator, containing references to the locators. Alternatively, you could create a new
(private) inner class within AdjustableStack, which contains two members, the element and
the locator. Either approach is fine.

Operations: Here is a list of all the public methods your program is to implement.

AdjustableStack(): This creates a new empty stack. (Hint: While it is tempting to use
Java’s built-in stack object, this is not a good idea because you will need to implement
your own push operation. It is inconvenient to use a fixed-size array, since you cannot
predict in advance how many entries we will push, which necessitates expanding the
array. We would recommend that you store your stack in an expandable array, such as
Java’s ArrayList. This allows you to efficiently access individual elements, and you can
add as many entries as needed.)

2



Locator push(Element element): This pushes element onto your stack. It also creates a
new Locator object that references this element and returns this Locator.

Element pop(): This removes the element from the stack and returns its value. If the stack
is empty, this throws an Exception with the message "Pop of empty stack".

Element peek(): This returns a reference to the top element of the stack, without altering
its contents. If the stack is empty, this throws an Exception with the message "Peek

of empty stack".

int size(): Returns the number of elements currently in the stack.

void promote(Locator loc): Promotes the stack entry referenced by loc. If loc references
the top of the stack, then this does nothing. Otherwise, it swaps this entry with the
entry that is one position closer to the top of the stack. You may assume that that given
locator is valid, and it refers to an element that is currently in the stack.

void demote(Locator loc): Demotes the stack entry referenced by loc. If loc references
the bottom entry of the stack, then this does nothing. Otherwise, it swaps this entry
with the entry that is one position farther from the top of the stack. You may assume
that that given locator is valid, and it refers to an element that is currently in the stack.

int getDepth(Locator loc): Returns the depth of the stack entry referenced by loc. This
is defined to be the number of positions from the top of the stack (so, the depth of the
top itself is defined to be zero). You may assume that that given locator is valid, and it
refers to an element that is currently in the stack.

ArrayList<String> list(): This returns a Java ArrayList whose members are the ele-
ments of the stack, listed from the top of the stack down to the bottom. For exam-
ple, if you started with an empty stack and performed push("cat"); push("dog");

push("pig"), this returns an ArrayList containing ⟨"pig", "dog", "cat"⟩.

What you need to do: We will provide you with two programs that take care of the input and
output (Part0Tester.java and Part0CommandHandler.java). All you need to do is to imple-
ment the above functions. In fact, we will give you a skeleton program, AdjustableStack.java,
with all the function prototypes, and you just need to fill them in.

package cmsc420_s23; // Do not alter this line

import java.util.ArrayList;

public class AdjustableStack<Element> {

public class Locator { /* ... */ }

public AdjustableStack() { /* ... */ }

public Locator push(Element element) { /* ... */ return null; }

public Element pop() throws Exception { /* ... */ return null; }

public Element peek() throws Exception { /* ... */ return null; }

public int size() { /* ... */ return 0; }

public ArrayList<Element> list() { /* ... */ return null; }

public void promote(Locator loc) { /* ... */ }

public void demote(Locator loc) { /* ... */ }

3



public int getDepth(Locator loc) { /* ... */ return 0; }

}

Sample input/output: Here is an example of what the input and output might look like.

Input: Output:
push:cat push(cat): successful

push:dog push(dog): successful

push:pig push(pig): successful

list list: pig dog cat

size size: 3

promote:dog promote(dog): successful

list list: dog pig cat

depth:pig depth(pig): 1

pop pop: dog

What we give you: We will provide you with skeleton code to get you started on the class
Projects page (Part0-Skeleton.zip). This code will handle the input and output and pro-
vide you with the Java template for AdjustableStack. All you need to do is fill in the
contents of this class. Note that directory structure has been set up carefully. You should
not alter it unless you know what you are doing.

Files: Our skeleton code provides the following files, which can be found in the folder “cmsc420 s23”.
Note that all must begin with the statement “package cmsc420 s23”.

Part0Tester.java: This contains the main Java program. It reads input commands from a
file (by default tests/test01-input.txt) and it writes the output to a file (by default
tests/test01-output.txt). You can alter the name of the input and output files.

▷ You should not modify this except possibly to change the input and/or output file names.
The output is sent to a file in the tests directory, not to the Java console. Also note that
if you use Eclipse, the contents of the File Explorer window are not automatically
updated. You will need to refresh its contents to see the new output file.

We will provide you with a few sample test input files along with the “expected” output
results (e.g., tests/test01-expected.txt). Of course, you should do your own testing.
To check your results, use a difference-checking program like “diff”.

Note that the tester program does not generate output to the console (unless there are
errors). The output is stored in the output file in the tests directory.

Part0CommandHandler.java: This provides the interface between our Part0Tester.java

and your AdjustableStack.java. It invokes the functions in your AdjustableStack

class and outputs the results. It also catches and processes any exceptions.

▷ You should not modify this file.

Submission Instructions: Submissions will be made through Gradescope. There is no limit to
the number of submissions you can make, and only the last submission will be graded. Here
is what to do:

4

http://www.cs.umd.edu/class/fall2022/cmsc420-0201/project.html


� Log into the CMSC420 page on Gradescope, select this assignment, and select “Submit”.
A window will pop up (see Fig. 2). Drag your file AdjustableStack.java into the
window. If you generated other files, zip them up and submit them all. Select “Upload”.

Drag and drop your file
AdjustableStack.java here

Figure 2: Gradescope submission. Drag your file AdjustableStack.java into the box.

� After a few minutes, Gradescope will display the results (see Fig. 3). Normally, a portion
of your grade will depend on good style and efficiency, but for this initial program, only
the autograder score will be used.

Summary of scores

Test 01 Results

Your output Our output

Figure 3: Gradescope autograder results (correct).

� On the top-right of the page, it shows a summary of the scores of the individual tests
as generated by the autograder. (If there are compilation errors, these will be displayed
on this page.) The center of the window shows a line-by-line summary, with the output
generated by your program on the left and the expected output on the right. If there
are mismatches, these will be highlighted (see Fig. 4).

� The final score is based on the number of commands for which your program’s output

5



Summary of scores

Your output Our output

Difference detected

Figure 4: Gradescope autograder results (incorrect).

differs from ours. Note that the comparison program is very primitive. It compares line
by line (without considering the possibility of inserted or deleted lines) and is sensitive
to changes in case and the addition of white-space.

Requirements: Since this is the first assignment, there are no requirements regarding efficiency
or good coding style. The grade is based entirely on the Gradescope autograder.

Partial Credit: If you don’t have time to implement the full version, you can get 50% partial credit
by simply implementing the operations that do not involve locators, namely the constructor
and the operations, push, pop, peek, and size.

6


