
CMSC 420: Spring 2023

Programming Assignment 1: Weight-based Leftist Heaps

Handed out: Thu, Feb 16. Due: Wed, Mar 1, 11:59pm.

Overview: In this programming assignment you will implement a variant of a leftist heap. Recall
that a leftist heap is a mergeable form of the heap structure, which was presented in Lecture 5.
Rather than using NPL (null-path length) values to balance the tree, our data structure will
be “weight-based,” in the sense that balance will be based on the number of nodes in each
subtree.

A Weight-Based Leftist Heap: Our data structure, called WtLeftHeap will store key-value pairs,
where the key represents the entry’s priority. The data type is generic and is templated by
two types Key and Value. The Key type implements the Java Comparable interface, meaning
that it must provide a function compareTo() for comparing keys. It is declared as follows:

public class WtLeftHeap<Key extends Comparable<Key>, Value>

Our weight-based leftist heap differs in a number of respects from the standard leftist heap
presented in class:

� Rather than a min-heap, this will be a max-heap, meaning that the each node’s parent
key is greater than or equal to its key (see Fig. 1).

10

4

3

1

MIA
87

DFW
29

SFO
53

SEA
67

ORD
12

3

LAX
30

JFK
58

DCA
74

ATL
42

1

5

1

1

BWI
15

1

subtree “weight” = number of nodes

left-child weight ≥ right-child weight
Leftist property:

Figure 1: Weight-based leftist heap.

� Rather than basing the tree structure on the NPL (null path length), it will be based
on a node’s weight, which is defined to be the number of nodes in the subtree rooted at
this node. Each node will store its weight. The weight of its left subtree can never be
smaller than the weight of its right subtree (see Fig. 1).

� In addition to the standard leftist-heap operations, you will also implement a function
that updates the key (priority) of a given entry. Since this alteration may violate the
max-heap structure, the tree structure may need to be updateed as well.

1

http://www.cs.umd.edu/class/spring2023/cmsc420-0201/Lects/lect05-heaps.pdf

� In order to efficiently support the above update operation, we will need to make two
additional enhancements to the tree structure. First, (as with the adjustable stack from
the earlier assignment) locators will be used to identify the node to be updateed. Since
the subsequent reorganization may involve entries moving both up and down the tree,
we will need to add a parent link to each node of the tree.

Locators and Adjustments: In many applications of heaps, it is necessary to update the priori-
ties of entries that reside in the heap. This raises two questions: (1) how to efficiently identify
an entry within the heap and (2) how to efficiently update the heap’s structure after making
the modification. As in the earlier programming assignment, we will handle the first issue
with the use of locators.

Whenever we insert a key-value pair in the tree, we return a reference to the node containing
the newly created entry. Since a node will be a protected object within our data structure,
we cannot just return a reference directly to it. Instead, we create a special public class
within our data structure, called a Locator, which encapsulates this reference. In addition
to creating a new node and adding it to the data structure, the insert function also creates a
new Locator object that references this node and returns it to the user of our data structure.
Now, when the user wants to update a key, it can use this locator to efficiently identify the
node to be updateed. A skeletal example of how to set this up is provided below.

public class WtLeftHeap<Key extends Comparable<Key>, Value> {

private class Node { ... } // a node of the tree (private)

public class Locator { // a node locator (public)

private Node node; // hidden reference to the node

...

}

public Locator insert(Key x, Value v) // insert method returns a Locator

...

}

It is the user’s responsibility to save these locators, and it is the data structure’s responsibility
to see that they are properly updated. As an example, consider the weight-based leftist heap
shown in Fig. 2(a), and suppose that the user wants to update the key of ORD from 12 to 82.
When ORD was added to the heap, the insert function returned a locator object. To modify
the key, we pass the locator into the updateKey function, which allows us to access the node
directly. We can then change its key to 82. Unfortunately, the heap order is now violated.
Since the key has increased, we can fix this by sifting the entry up the tree, repeatedly
swapping with its parent, until its parent’s key is at least as larger (see Fig. 2(b)). Depending
on how you implement this operation (moving nodes or copying their contents) other locators
may need to be updated as well.

Operations: You will implement the following public functions. Subject to the efficiency require-
ments described below, you are free to create whatever additional private/protected data and
utility functions as you like.

WtLeftHeap(): This constructs an empty heap. This creates an empty tree by initializing
the root to null (and performs any other initializations as needed by your particular
implementation).

2

10

4

3

1

MIA
87

DFW
29

SFO
53

SEA
67

ORD
12

3

LAX
30

JFK
58

DCA
74

ATL
42

1

5

1

1

BWI
15

1

updateKey(ORD, 82)

ORD’s locator

10

4

3

1

MIA
87

DFW
29

SFO
53

SEA
67

ORD
82

3

LAX
30

JFK
58

DCA
74

ATL
42

1

5

1

1

BWI
15

1

ORD

ORD’s locator

(a) (b)

SEA

SFO

Other locators may

need to be updated

Figure 2: (a) A weight-based leftist heap (with weights indicated in blue) and (b) the updateKey

operation.

int size(): Returns the number of entries in the current heap.

void clear(): This resets the structure to its initial state, effectively removing all its exist-
ing contents. (You do not need to do anything to existing locators that point into your
data structure. It is the responsibility of the user to remove these.)

Locator insert(Key x, Value v): Inserts the key-value pair (x, v), where x is the key and
v is the value.

Hint: This can be implemented without the need for loops or recursion by making a
single call to the merge utility function.

void mergeWith(WtLeftHeap<Key, Value> h2)): This merges the current heap with the
heap h2. If h2 is null or it references this same heap (that is, this == h2) then this
operation has no effect. Otherwise, the two heaps are merged, with the current heap
holding the union of both heaps, and h2 becoming an empty heap.

For testing purposes, you should implement merge operation so it produces exactly the
same tree as in the lecture notes. The only difference is that rather than using NPL
values to determine which subtree is on the left, use the weight of each subtree, that is,
the number of nodes. (As an exercise, convince yourself that the rightmost path of such
a tree has O(log n) nodes.)

Value extract(): If the heap is empty, this throws an Exception with the error message
"Extract from empty heap" Otherwise, this locates the entry with the maximum key
value, deletes it from the heap, and returns its associated value.

Hint: This can be implemented without the need for loops or recursion by making a
single call to the merge utility function.

void updateKey(Locator loc, Key x): Change the key associated with entry loc to x,
and update the structure appropriately. You may assume that loc is a valid locator for
this instance of the data structure.

If the key increases, repeatedly swap this entry with its parent until reaching the root
or until the parent key is greater than or equal. If the key decreases, repeatedly swap

3

with the larger of the two children until reaching the leaf level or until both children’s
keys are less than or equal.

Hint: There are two obvious methods on how to do this. One involves swapping entire
nodes by unlinking and relinking them, and the other involves leaving the nodes where
they are, but swapping their contents. You may implement whichever version you prefer
(since it won’t affect the results).

Key peekKey(): Returns the maximum key in the heap (that is, the key associated with the
root node). If the tree is empty, return null.

Value peekValue(): Returns the value associated with the maximum key in the heap (that
is, the value associated with the root node). If the tree is empty, return null.

ArrayList<String> list(): This operation lists the contents of your tree in the form of a
Java ArrayList of strings. The precise format is important, since we check for correct-
ness by “diff-ing” your strings against ours.

Starting at the root node, visit all the nodes of this tree based on a right-to-left
preorder traversal. In particular, when visiting a node reference u, we do the following:

Null: (u = null) Add the string "[]" to the end of the array-list and return.

Non-null: (u ̸= null) Add the string "(" + u.key + ", " + u.value + ") [" +

u.weight + "]" with the node’s key, value, and weight to the end of the array-
list. (The symbol “ ” is a space.) Then recursively visit u.right and then u.left.

Our command handler program takes the result of the list command and generates a
nicely formatted tree (see Fig. 3(c)). The reason for performing the traversal in right-
to-left order, rather than the traditional left-to-right, is so that the printed result looks
like a 90◦ rotation of the tree.

6

2

1

IAD
42

LAX
88

JFK
27

DCA
67

3

BWI
94

1

ATL
42

1

(94, BWI) [6]

(67, DCA) [2]

[]

(42, IAD) [1]

[]

[]

(88, LAX) [3]

(48, ATL) [1]

[]

[]

(27, JFK) [1]

[]

[]

| (67, DCA) [2]

| | (42, IAD) [1]

(94, BWI) [6]

| | (48, ATL) [1]

| (88, LAX) [3]

| | (27, JFK) [1]

(a) (b) (c)

Raw output

Formatted output

Figure 3: (a) A heap, (b) the result of list, and (c) the formatted output produced by our program.

Skeleton Code: As in the earlier assignment, we will provide skeleton code on the class Projects
Page. The only file that you should need to modify is WtLeftHeap.java.

4

http://www.cs.umd.edu/class/spring2023/cmsc420-0201/project.html
http://www.cs.umd.edu/class/spring2023/cmsc420-0201/project.html

Remember that you must use the package “cmsc420 s23” in all your source files in order
for the autgrader to work. As before, we will provide the programs Part1Tester.java and
Part1CommandHandler.java to process input and output. You need only implement the data
structure and the functions listed above.

Class Structure: The high-level WtLeftHeap class structure is presented below. There are two
inner classes, a private one for the node and a public one for the locator. The entries each
consist of a key (priority) and associated value. These can be any two types, but it must be
possible to make comparisons between keys. Our class is parameterized with two types, Key
and Value. We assume that the Key object implements Java’s Comparable interface, which
means that is supports a method compareTo for comparing two such objects. This is satisfied
for all of the Java’s standard number types, such as Integer, Float, and Double as well as
for String.

We recommend that the tree’s node type, called Node, is declared to be an inner class. (But
you can implement it anyway you like and give it any name you like.) This way, your entire
source code can be self contained in a single file.

public class WtLeftHeap<Key extends Comparable<Key>, Value> {

private class Node { ... }

public class Locator { ... }

// ... any private and protected data and utility functions

public WtLeftHeap() { ... }

public int size() { ... }

public void clear() { ... }

public Locator insert(Key x, Value v) { ... }

public void mergeWith(WtLeftHeap<Key, Value> h2) { ... }

public Value extract() throws Exception { ... }

public void updateKey(Locator loc, Key x) { ... }

public Key peekKey() { ... }

public Value peekValue() { ... }

public ArrayList<String> list() { ... }

}

Efficiency requirements: (10% of the grade) The functions insert, mergeWith, and extract

should all run time proportional to the length of the rightmost chain of the trees involved.
The function updateKey should run in time proportional to the distance that the node needs
to travel during the sifting process. (This is not guaranteed to be O(log n), since the height of
the tree may be much larger than this.) The functions size(), peekKey(), and peekValue()

should all run in O(1) time. The function list() should run in time proportional to the
number of nodes in the tree. A portion of your grade will depend on the efficiency of your
program.

Style requirements: (5% of the final grade) Good style is not a major component of the grade,
but you should demonstrate some effort here. Part of the grade is based on clean, elegant
coding, and a reasonable amount of comments. There is no hard rules here, and we will not

5

be picky. If we deduct points, it will because you used an excessively complicated structure
to implement a relatively simple computation.

The other part is based on commenting. You should have a comment at the top of each file
you submit. This identifies you as the author of the program and provides a short description
of what the program does. For each function (other than the most trivial), you should also
include a comment that describes what the function does, what its parameters are, and
what it returns. (If you would like to see an example, check out our canonical solution to
Programming Assignment 0, on the class Project Page.)

Testing/Grading: Submissions will be made through Gradescope. You need only upload your
modified WtLeftHeap.java file. We will be using Gradescope’s autograder and JUnit for
testing and grading your submissions. We will provide some testing data and expected results
along with the skeleton code.

Challenge Problem: (Remember that challenge problems are for extra credit points, which are
not part of the standard grade.)

One of the dangers of locators is that they contain a link pointing to a node within your data
structure. If a user makes an error and attempts to use an invalid locator, it can destroy
the integrity of your data structure. Modify your program by adding an additional check
to updateKey that verifies that the given locator is valid for the given heap. If not, your
program should throw an Exception with the error message "Invalid locator". This may
necessitate changes to other heap functions as well.

There are two ways that a locator may become invalid:1

� An entry is extracted from the heap, and later an attempt is made to access its locator
to update the key of this nonexistent entry.

� A locator loc points to a node that is currently in one heap (say, h1) but the user
attempts to access it through an updateKey on a different heap (say, h2.updateKey(loc,
999)).

The test run testEC1 tests the above functionality. You may assume that the user is not
allowed to copy the contents of one locator to another.

If you do the challenge problem, add a comment to the top of your WtLeftHeap.java stating
that you attempted the challenge problem. Also, explain how you implemented it (what was
your method and which additional class objects and functions were added).

Grading will depend in part on how efficient your implementation is. For basic credit, your
locator validation should run in time proportional to the height of the tree. Note, however,
that a leftist tree is generally not of O(log n) height, because left-side paths can be arbitrarily
long. For additional credit (extra-extra credit!), perform the validation in O(log n) time, and
provide a careful explanation of how your algorithm works.

1There is actually a third way. All the locators become invalid when the tree is cleared. Don’t worry about this
case, however, since we never test it.

6

http://www.cs.umd.edu/class/spring2023/cmsc420-0201/project.html

