
CMSC 420: Spring 2023

Programming Assignment 2: Sliding-Midpoint kd-Trees

Handed out: Mon, Mar 27. Part 1 (worth 20%) due Fri, Apr 7, 11:59pm and Part 2 (worth
80%) due Fri, Apr 21, 11:59pm.

Overview: In this assignment we will implement a variant of the kd-tree data structure, called a
sliding-midpoint kd-tree (or SMkdTree) to store a set of points in 2-dimensional space. This
data structure involves a number of notable features:

� It is an extended binary tree consisting of internal and external nodes. Points are stored
only in the external nodes.

� Its subtrees periodically rebalance themselves. Each node maintains a counter which is
incremented as insertions are made. When the counter is large enough, we rebuild the
subtree completely from scratch.

� Splitting is based on a method called the sliding-midpoint rule, which attempts to keep
cells as nearly square as possible, subject to the restriction that every cell has at least
one point.

Points, Labeled Points, and Rectangles: The objects to be stored in the trees are 2-dimensional
points. To save you some effort, as part of the skeleton code, we will provide you with a class
for 2-dimensional points, called Point2D.java. This class will provide you with some utility
functions, such as accessing individual coordinates and computing distances.

The points stored in your tree will be enhancements of the Point2D type, called an LPoint

(for labeled point), which also stores a string label. An LPoint implements the following Java
interface:

public interface LabeledPoint2D {

public double getX(); // get point’s x-coordinate

public double getY(); // get point’s y-coordinate

public double get(int i); // get point’s i-th coordinate (0=x, 1=y)

public Point2D getPoint2D(); // get the point itself (without the label)

public String getLabel(); // get the label (without the point)

}

For example, given an LPoint called q with coordinates (31.2,−7.5) and label "ABC", the
operation q.getX() returns 31.2, q.getLabel() returns "ABC", and q.getPoint2D() returns
the Point2D structure for the point (31.2,−7.5). The SMkdTree is templated with the labeled
point type:

public class SMkdTree<LPoint extends LabeledPoint2D> { /* fill this in */ }

We will also provide you with a class for storing axis-aligned rectangles, called Rectangle2D.java.
This also provides a number of useful functions, such as testing whether two rectangles are
disjoint or whether one contains the other.
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Node Structure: The SMkdTree data structure is an extended binary tree (see Fig. 1). As men-
tioned above, this is an extended binary tree. Each external node stores a single point (that is,
a reference to an LPoint). We allow external nodes to be empty, in the sense that they store
no point. Each internal node stores the node’s cutting dimension (either 0 or 1), its cutting
value (a double), and pointers to its left and right children. Following the same convention
as standard kd-trees, if a point lies on the cutting line, it is placed in the right subtree.
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Figure 1: An example of an SMkd-Tree with bounding box [0, 10]× [0, 10].

Note that there are no null child pointers. Every internal node has two non-null children,
which may be either internal or external nodes. External nodes have no children by definition.
Even the root pointer is non-null. An empty tree is represented having the root point to a
single external node whose point is null.

A natural way to handle the two different node types in Java is to create an abstract inner
class, Node. This stores all information that is common to both node types (such as decla-
rations of helper functions). From this we derive two subclasses, one for internal nodes, and
the other for external nodes, as shown below.

public class SMkdTree<LPoint extends LabeledPoint2D> {

private abstract class Node { // abstract node type

abstract LPoint find(...); // helpers and utilities

abstract Node insert(...);

abstract Node delete(...);

// ... (other abstract methods)

}

private class InternalNode extends Node { // internal node

int cutDim; // cutting dimension

double cutVal; // the cutting value

Node left, right; // children

// ... (other data and implementation of methods)

}

private class ExternalNode extends Node { // external node

LPoint point; // the point (null if empty)

// ... (other data and implementation of methods)
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}

The tree itself stores a pointer to the root node and a bounding axis-aligned box (i.e.,
Rectangle2D), which contains all the points. This bounding box serves as the cell for the
root node. It maintains additional information, which will be discussed below.

You might observe that we don’t need to store the node types. This is handled automati-
cally by Java’s inheritance mechanisms. For example, suppose that we want to invoke the
find helper function on the root. Each node type defines its own helper. We then invoke
root.find(pt). If root is an internal node, this invokes the internal-node find helper, and
otherwise it invokes the external-node find helper.

Sliding-Midpoint Rule: This splitting rule is unusual in that it prioritizes producing cells that
are nearly square, rather than producing a tree of balanced height. This is useful in applica-
tions, such as finite element analysis, where the shapes of the cells are of greater importance
than the height of the tree.

Suppose for now that we want to store a set S of two or more points, all of which lie within
a given rectangular cell R. (Later we will see how to apply this to insert individual points.)

The sliding-midpoint rule first determines the splitting dimension as follows. It takes the
longer dimension of R as the default (see Fig. 2(a)).1 If the length and width are the same,
then cut vertically.

Next, sort the points along the cutting dimension.2 If we are in a badly degenerate situation
where all the points have the same coordinates along the cutting dimension (which is easily
determined by comparing the first and last points in sorted order), then this cutting dimension
is no good. Instead, use the other axis as the cutting dimension (see Fig. 2(b)).3

x

y

R
R

cutDim=0

cutDim=1

R

(a) (b)

R

(c)

midpoint

Figure 2: Sliding-midpoint splitting rule.

Now that we have selected the cutting dimension, we need to select the cutting value. The
default cutting value is the midpoint of R along the cutting dimension. However, if all the
points lie on one side of the midpoint, we move (or “slide”) the cutting line until it coincides
with the first point (see Fig. 2(c)).

1Thus, if the rectangle is wider than tall, the cut is vertical, and otherwise it is horizontal. Remember that the
cutting dimension is perpendicular to the direction of the cut, so a vertical cut uses 0 (or x) for the cutting dimension,
and a horizontal cut uses 1 (or y).

2Hint: Don’t write your own sorter. The best way to do this is to use Java’s built-in sorting function,
Collections.sort, and create two Comparator objects, one that sorts by x and another by y.

3Hint: If you implemented your comparator to sort lexicographically, then you won’t need to resort after changing
your cutting dimension.
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By our convention that points lying on the splitting line are placed in the right subtree, it is
possible to produce external nodes that contain no point (this happens to the left subtree in
Fig. 2(c)).

Bulk Creation: A useful utility program that you should implement creates a new subtree for a
set of zero or more points and a given rectangular cell. If there are zero points in the set,
create a single external node whose associated point is null. If there is one point in the set,
create a single external node that contains this point. If there are two or more points in the
set, apply the above sliding-midpoint rule to determine the cutting dimension and cutting
value. Partition the points about the splitting line (remembering that ties are broken in favor
of the right subtree). Then recursively build the left subtree and right subtree from these two
subsets.4 Finally, create a new internal node having this cutting dimension, cutting value,
and these subtrees as children.

Here is a suggestion of how this function might be defined. It is passed in the points as a Java
ArrayList and the rectangular cell, and it returns a pointer to the root node of the kd-tree
that is constructed.

Node bulkCreate(List<LPoint> pts, Rectangle2D cell)

Comparing and Sorting Points: Buld creation involves sorting points, either by x or by y. You
should use Java’s built-in sorting function, Collections.sort. To instruct it how to sort,
you provide it a comparison function. (In the case of partitioning for insertion, this is either
lexicographically by (x, y) or lexicographically by (y, x), depending on the cutting dimension).

In Java, this is done defining a class that implements the Comparator interface. Such a class
defines a single function, called compare, which compares two objects of the desired type,
and returns a negative, zero, or positive result depending on which argument is larger. In our
case, the objects are labeled points, LPoint. Here is a brief example on how you might set
this up. (Some examples can be found here.)

private class ByXThenY implements Comparator<LPoint> {

public int compare(LPoint pt1, LPoint pt2) {

/* compare pt1 and pt2 lexicographically by x then y */

}

}

private class ByYThenX implements Comparator<LPoint> {

public int compare(LPoint pt1, LPoint pt2) {

/* compare pt1 and pt2 lexicographically by y then x */

}

}

Beware when trying to compare points for equality. Given two LPoint objects p and q,
the operation p == q just checks whether they reference the same block of memory. In-
stead, you can use the equals function in the Point2D class. To access this, you first
need to convert the labeled points into regular points, and then they can be compared:
p.getPoint2D().equals(q.getPoint2D()).

4Hint: Given that you already sorted your points, a convenient way to do this is to use Java’s subList function,
which allows you to treat a Java ArrayList as two separate sublists. Be careful when using it. The starting index of
the sublist is inclusive, but the ending index is non-inclusive.
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Inserting and Deleting: To insert a new point in the sliding-midpoint tree, we first search for
the point. If we find it in the tree, then we throw an exception. If not, the search ends at
an external node. If this node has no point, then we store the point here. If it has a point,
then we create a Java ArrayList with two points, the existing point and the newly inserted
point. We then invoke the bulkCreate function described above, and replace the external
node with the resulting subtree.

Deleting a point is very simple. We first search for the point to be deleted. If we do not find
it, we thrown an exception. Otherwise, it will be found in some external node. We simply
make the node empty by setting the point reference in this node to null. This will produce
a hole in the tree. If we are lucky, a subsequent insertion may fill in this hole. But if not, we
may have many holes. We describe a process below for eliminating these holes by rebuilding
the tree.

Keeping Balance: As points are inserted to and deleted, the tree will become unbalanced and
may have many holes resulting from deletions. (In the context of the sliding-midpoint rule,
good balance is reflected in having cells that are nearly square. The height of the tree is not
important.) We balance subtrees by invoking the bulkCreate function to rebuilding them
from scratch. We use two different mechanisms to trigger rebuilding, one for insertion and
one for deletion.

For insertion, Intuitively, if the number of insertions is high relative to the subtree’s size,
then the tree may be out of balance. To remedy this, we rebuild the entire subtree using the
bulkCreate function described above.

There are two ways that subtree rebuilding is triggered.

Insertion: Each internal node maintains two quantities. Its size stores the total number
of points within the subtree rooted at this node, and its insertion counter stores the
number of insertions that have taken place into this subtree since it was created. Each
time we insert a point that lies within the subtree rooted at this node, we increment both
its insertion counter and its size. When we delete a point, we decrement its size, but
its insertion counter is unchanged. Rebuilding is triggered by the relationship between
these quantities, as described below.

When the tree is first constructed, the user provides an integer parameter called the
rebuild offset, which never changes. After we successfully perform an insertion of some
point p and update the insertion counters and subtree sizes, we retrace the search path
top-down from the root to the external node containing p, and for each node u on this
path, we check whether

u.insertionCounter > (u.size + rebuildOffset)/2

Ignoring the rebuild offset, intuitively, this means that we have inserted sufficiently many
points that this subtree may be out of balance. The purpose of the rebuild offset is to
provide the user with a bit of fine control, so we are not constantly rebuilding small
subtrees.

If this condition is not satisfied by any node, then there is nothing to do. Otherwise, for
the first node u that satisfies this condition, we rebuild its subtree from scratch. To do
this, we perform a traversal of the tree, storing all of its points in a Java ArrayList, and
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then we invoke bulkCreate on the resulting list and the existing cell for this node. This
subtree replaces the current one. All internal nodes in the rebuilt subtree should have
their insertion counters reset to zero, and all sizes should be correctly computed. (It is
important to note that the process runs top-down, and it stops with the first rebuilding.)

Deletion: Deletion is handled through a more global process. We maintain a single counter,
called the deletion counter, for the entire tree. Each time a successful deletion is per-
formed, we increment this counter. Following a successful deletion, we check whether
the deletion counter is strictly larger than the number of points currently in the tree. If
so, we rebuild the entire tree.5

Operations: You are to fill in the missing details of the file SMkdTree.java, which we will provide
to you. Here is the public interface.

SMkdTree(int rebuildOffset, Rectangle2D rootCell): This constructs a new (empty)
SMkdTree with the given rebuild offset and bounding box.

void clear(): This resets the tree to its initial (empty) condition.

int size(): Returns the number of points in the tree.

int deleteCount(): Returns the current value of the deletion counter, described above.
(This is for testing and debugging purposes, since the user need not be aware of its
value.)

LPoint find(Point2D q): Determines whether a point coordinates pt occurs within the
tree, and if so, it returns a reference to the associated LPoint. Otherwise, it returns
null.

void insert(LPoint pt) throws Exception: If the given point lies outside the root’s bound-
ing box (given in the constructor), this throws an Exception with the message "Attempt
to insert a point outside bounding box". If there exists a point with the same co-
ordinates already in the tree, it throws an Exception with the message "Insertion of

duplicate point". Otherwise, it inserts the given in the tree, through the process
described above. (Note that this may involve rebuilding one of the subtrees.)

void delete(Point2D pt) throws Exception: If there is no point with the given coordi-
nates, this throws an Exception with the message "Deletion of nonexistent point".
Otherwise, it deletes the point from the tree by the process described above.

ArrayList<String> list(): This operation generates a right-to-left preorder traversal of
the nodes in the tree. There is one entry in the list for each node of the tree. The output
is described below:

Internal nodes: Depending on whether the cutting dimension is x or y, this generates
either:

"(x=" + cutVal + ") " + size + ":" + insertCt – or –
"(y=" + cutVal + ") " + size + ":" + insertCt

where cutVal is the node’s cutting value, size is the size of the node’s subtree,
insertCt is the value of the node’s insertion counter, and is a space.

5You might wonder why we use different mechanisms for insertion and deletion. We will discuss this when we
cover the topic of scapegoat trees, which use a similar rebuilding process.
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External nodes: If the node contains a non-null point, called point, this generates the
string "[" + point.toString() + "]" (where we are using the toString func-
tion provided by the LPoint object). If the point is null, this generates the string
"[null]".

An example of the result of list is shown in Fig. 3(c). Our command handler will convert
this into a more readable indented form as shown in Fig. 3(d).6
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Figure 3: (a) An SMkd-tree, (b) the associated subdivision, (c) the output of the list function,
and (d) formatted output generated by the command handler. The red values associated with each
node are the size and insertion counter.

LPoint nearestNeighbor(Point2D center): This function returns a reference to the clos-
est point in terms of squared Euclidean distances to the given query point. If the tree
is empty, it returns null. If there are multiple nearest neighbors at the same distance
(see Fig. 4), it returns the point that is smallest in (x, y) lexicographical order (smallest
x with ties broken in favor of smallest y).

ArrayList<LPoint> nearestNeighborVisit(Point2D center): This is the same as the
above function nearestNeighbor, but it is designed for testing/debugging. It performs
the same search as nearestNeighbor, but it returns a list of all the points visited by the
search algorithm. For the sake of consistency, these points should be listed in increasing
(x, y) lexicographical order.7

Computing distances involves computing square roots, which is both unnecessary and
introduces floating-point errors. Instead, you should compute squared Euclidean dis-
tances. (This does not change the identity of the closest point). To assist you, the
Point2D and Rectangle2D classes both provide a utility function distanceSq(Point2D

pt), which computes the squared distance from the current object to point pt.

6Hint: Differences between your tree and ours will first show up in the unformatted list output. Rather than
trying to interpret the error there, instead look for the difference in the formatted output that is closest to the root.
That will indicate which subtree is incorrect.

7Hint: You can implement both functions using just one helper function. For example, you can use the return
value from the helper function to store the closest point seen so far in the search, and pass a reference to the array
list of visited point as an argument. As you visit successive points, just append them to the array list. Depending
on the desired result, you will either return the closest point or the sorted array list.
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Figure 4: Nearest-neighbor query. Among the equally close candidates (ORD, DFW, DCA, . . .), ORD is
smallest in lexicographical order.

You should adapt the algorithm given in class to the context of extended trees. In
particular, when visiting an internal node, you should first visit the subtree that is closer
to the query point. Second, you should avoid visiting nodes that you can infer cannot
contain the nearest neighbor. To do this, keep track of the closest point seen so far,
and if node’s cell is farther away from the query point than this, then you should avoid
visiting the node. (Or if you visit it, you should discover this and return immediately.)

Parts: For the first part of the assignment (due Wed, Apr 5), implement the constructor and the
functions size, find, insert, clear, and list. We will use test cases test01-input.txt and
test02-input.txt for testing this part. For the second part (due Wed, Apr 19), implement
all the functionality.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You will need
to fill in the implementation of the SMkdTree.java. We also provide some utility classes (e.g.,
Point2D and Rectangle2D). You should not modify any of the other files, but you can add
new files of your own. For example, if you wanted to add additional functions to any of the
classes, such as Point2D or Rectangle2D, it would be preferable to create an entirely new
class (e.g., MyRect2D), which you will upload with your submission.

As with the previous assignment, the package “cmsc420 s23” is required for all your source
files. As usual, we will provide a driver programs (tester and command-handler) for processing
input and output. You should not modify the signature of the public functions, but you are
free to set up the internal structure however you like.

Efficiency requirements: (10% of the final grade) The function size should run in constant
time, the dictionary operations find, insert, and delete should run in time proportional to
the height of the tree, assuming no rebuilding takes place. The time for rebuilding should be
O(m logm) for each node you rebuild, where m is the number of points in the subtree being
rebuilt. This means that you have enough time to sort all the points within a node during the
rebuilding process. You may assume that the Java Collections.sort function operations
in O(m logm) time on a list of size m. The nearest neighbor functions should be true in
running time to the algorithm given in class. For nearestNeighborVisit, you can also use
an additional O(m logm) time to lexicographically sort the m points that are reported.
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Style requirements: (5% of the final grade) The style requirements are essentially the same as
for the previous assignment. Your code should be relatively clean, and comments should
be provided to explain important functions. You may refer to our canonical solutions for
guidance (but you do not need to be quite as excessive in commenting as I am).

Testing/Grading: As always, we will provide some sample test data and expected results along
with the skeleton code.

As before, we will be using Gradescope’s autograder for grading your submissions. Un-
less you created your own additional files, you should only submit one file,
SMkdTree.java. If you created any additional files for utility objects, you will need to upload
those as well.

Challenge Problem: Implement an iterator for your tree, which generates all the points stored
in the tree according to an inorder traversal. To do this, generate a (private) inner class that
implements the Java interface Iterator<LPoint> (defined in Java.util). You may name this
whatever you like, but for concreteness, let’s call it LPointIterator. Your SMkdTree should
support a public function LPointIterator iterator(), which returns such an iterator ob-
ject. Your LPointIterator class should implement the following functions:

LPointIterator(): A constructor, which initializes the iterator.

boolean hasNext(): Returns true if there are elements remaining to be iterated.

LPoint next(): Returns a reference to the next point in the the tree, according to an inorder
traversal. If there are no more point (that is, if hasNext() returns false), this throws
a NoSuchElementException (which is defined in Java.util).

Note that the iterator should not return references to null points. If points have been deleted
from your structure, your iterator should jump over them, and return the next available non-
null point. Your iterator should take O(h) space, where h is the height of your tree. If there
are no empty external nodes, the operations should run in time proportional to the height of
the tree. If there are empty external nodes, each operation can take O(h · e) time, where e is
the number of empty external nodes you need to skip over.

Hint: A natural approach is to represent the iterator as a reference to a node in your tree,
and the next() function advances this pointer to the next external node in inorder, skipping
over empty external nodes. Implementing this in O(1) space requires that you have parent
links (or some other way of navigating the tree from any node). Alternatively, you can store
a stack of ancestor nodes in O(h) space, and use this to guide the search for the next node
according to an inorder traversal. Either approach is fine for full credit.

Beware: If you are considering exploiting an auxiliary structure (such as a Java ArrayList)
that provides its own iterator, you will need to do this within the style/efficiency requirement
given above. For example, a HashMap supports fast insertion and deletion, but sorting it will
take too long. List structures like ArrayList and LinkedList can be maintained in sorted
order, but insertions and deletions are probably too slow.
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Insertion/BulkCreate Example: To get a better understanding of how insertion works with
bulk creation, suppose we have external node that stores the labeled point MSP at coordinates
(2.5, 8.5) (see Fig. 5(a)). It lies within a cell whose lower corner is (2, 6) and whose upper
corner is (5, 10). We will represent rectangles by giving their lower-left and upper-right points,
so this is [(2, 6), (5, 10)]. Suppose we want to insert a new point SEA with coordinates (4.0, 9.5)
(see Fig. 5(b)).
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Figure 5: Insertion and bulk create. The insertion of SEA at (4.0, 9.5) causes the external node with
MSP to split. Given these two points, bulkCreate generate a a four-node subtree, which replaces
the original external node.

We create a 2-element ArrayList storing these two points, and invoke bulkCreate on them
with the current cell.

bulkCreate([MSP,SEA], [(2,6),(5,10)]): Since this cell is taller than wide, we take the
cutting dimension to be 1 and split horizontally. The ideal split would be at y = 8, but
since both points lie above this, we “slide” the splitting line up to y = 8.5 so it passes
through MSP. We generate an internal node with cutDim = 1 and cutVal = 8.5, and
partition the points about y = 8.5. By our convention, the point MSP goes in the right
subtree as does SEA. The left side of the partition is empty. We then invoke bulkCreate
recursively to generate its children:

bulkCreate([], [(2,6),(5,8.5)]): There are no points, so this generates an empty
external node and returns.

bulkCreate([MSP,SEA], [(2,8.5),(5,10)]): Since this cell is wider than tall, we
take the cutting dimension to be 0 and split vertically through the midpoint at
x = 3.5 (no sliding needed). We partition the points, with MSP on the left side and
SEA on the right. We create a new internal node with cutDim = 0 and cutVal =

3.5. We then invoke bulkCreate recursively to generate its children:

bulkCreate([MSP], [(2,8.5),(3.5,10)]): This generates a single external node
with MSP.

bulkCreate([SEA], [(3.5,8.5),(5,10)]): This generates a single external node
with SEA.

The final subtree is shown in Fig. 5(c) and the resulting subdivision of the cell is shown in
Fig. 5(d). The insertion procedure returns this subtree to replace the original external node
with MSP.
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