
CMSC 420: Spring 2023

Programming Assignment 3: Clustering and the Farthest-First Traversal

Handed out: Tue, Apr 25. Due Wed, May 17, 11:59pm.

Overview: In this assignment we will extend our kd-tree and heap data structures from the earlier
assignments to an application in data science and machine learning. The basic assignment
(which is worth 80% of the grade, excluding the style/efficiency points) involves utilities for
maintaining a clustering of a set of points, and the full assignment involves an interesting algo-
rithm called the farthest-first traversal. The basic assignment largely involves modifications
to the SMkdTree data structure, and the full assignment involves both both the SMkdTree

and the WtLeftHeap structure. (We will make versions of our solutions to Programming
Assignments 1 and 2 available to you. You may either use yours or modify ours without
penalty.)

Center-Based Clustering: Suppose that we are given a large set of points, called sites, which
we wish cluster. Each cluster is modeled by a point called the cluster center. Each site is
assigned to a cluster based on its closest cluster center. For example, in Fig. 1(a), we show
a set of sites (black) and cluster centers (blue), and in Fig. 1(b) we illustrate the assignment
of sites to centers, where the sites in each colored region are assigned to the cluster center at
the middle of the region.

(a) (b)

sites

centers

(c)

new

Figure 1: Center-based clustering. Each site is assigned to the cluster center that is closest to it.

In many applications, the centers are computed through an incremental process, where the
centers are added one by one, based on where the need is greatest. Think of sites as phones
and the cluster centers cell phone towers. Whenever a new tower is opened, many sites change
their cluster membership (as is the case for the sites in the green region of Fig. 1(c)).

In many applications, cluster centers must be chosen from among the sites. We will not
assume this, and in our tests, the cluster centers will always be distinct from the sites.

Basic Assignment: Cluster Assignment: In this part of the assignment, you will both modify
the SMkdTree and implement new data structure, called ClusterAssignment, which main-
tains two point sets in R2, a set of sites and a set of cluster centers. It supports the insertion

1



and deletion of sites and the insertion of cluster centers. The objective is to efficiently main-
tain an assignment of each site to its closest center.

The sites are stored in the kd-tree in the same manner as in Programming Assignment 2, but
we will augment the kd-tree to efficiently process the addition of new cluster centers. Recall
that each node of the tree is associated with a rectangular cell, call it cell. In addition, for
each node we maintain a set of center points, called contender, which might be the closest
center to some site within this cell. How do we determine which centers are contenders for a
given node?

(a) (b)

cellri

Ri

ci

c1 c2

R1 R2

(c)

c1 c2

R2

rj > Rmin cj

p

Rmin = min(R1, R2)

R1
cj is not a contender

Figure 2: Contenders for the closest center.

Suppose that we have a set of existing contenders for some cell, {c1, . . . , ck}. For each of
these cluster centers ci, we compute its closest squared distance to the cell, ri, and its largest
squared distance to the cell Ri (see Fig. 2(a)). For any site p in the cell, we know that
ri ≤ dist2(p, ci) ≤ Ri. Let Rmin = min1≤i≤k Ri be the minimum among the Ri values (see
Fig. 2(b)). If for any center cj , we have rj > Rmin, we can infer that cj cannot be a contender.
Why? Suppose that c1 is the contender with the smallest R value, so that Rmin = R1. The
closest that any site p of the cell could be to cj is rj . The farthest it could be from c1 is R1.
Therefore, we have

dist2(p, cj) ≥ rj > Rmin = R1 ≥ dist2(p, c1),

which implies that p is closer to c1 than cj , no matter which point p is selected within the cell.
(Note that we cannot infer that c1 is p’s closest center, only that cj not its closest center).

Augmenting the kd-tree: We will augment our kd-tree as follows. For every node (both internal
and external) we will maintain a list of closest-center contenders as described above. (Because
we will need to both insert and delete entries, it is recommended that you implement this as
a Java LinkedList, rather than an ArrayList.) For example, this could be made a member
of your general kd-tree node, so that both internal and external nodes will inherit it.

public class SMkdTree<LPoint extends LabeledPoint2D> {

private abstract class Node {

LinkedList<LPoint> contenders; // list of this node’s contenders

// ... other Node stuff

}

class InternalNode extends Node { /* ... */ }

2



class ExternalNode extends Node { /* ... */ }

// ... and so on

}

Every node will have at least one contender. To guarantee this, even when the tree is empty,
the tree constructor will be given an inition starting center, startCenter. Initially, the tree
consists of an empty leaf node whose cell is rootCell, and whose associated contender list
contains a single entry startCenter.

Adding a Center: A new center, called center, is added as follows. Observe that if a center is
a contender for some node, it is automatically a contender for all its ancestors. (We’ll leave
this as an exercise for you.) This means that we can employ a top-down process for filtering
this center into all the nodes for which it is a contender.

The process works as follows. We create a recursive helper to do this, which will be a member
function of the internal and external node classes. The initial call is at the root node. We
pass in the new center and the root cell. In general, let u denote the current node being
visited in the recursive process.

� Iterate through the points of u.contenders and for each, compute its Ri value,
1 that

is, the largest squared distance from this center to the current node’s cell. Save the
minimum value among all of these, including the R value for center itself, as Rmin.

� Iterate through the elements of u.contenders a second time. For each compute its ri
value,2 that is, the closest squared distance from this center to the current node’s cell. If
for any contender, ri is strictly greater than Rmin, we remove the center corresponding
to ri from the contender’s list.

� Letting rnew denote the ri value for the new center, if rnew ≤ Rmin, add center to
u.contenders. Further, if this is an internal node, apply the function recursively to add
center to its left and right subtrees (using leftPart and rightPart to determine their
associated cells). On the other hand, if rnew > Rmin, we are done and simply return.

The above process computes the Ri and ri values each time we visit the node. For greater
efficiency, it would be a good idea to compute these values once, and save them in the cell.
We can also compute Rmin and update it incrementally. (This does not affect the asymptotic
time, however, because we will still need to traverse the list to determine which contenders
to delete.)

You might wonder why we need to maintain a full list of contenders for each external node.
Why not just compute the exact closest center to the site stored in this node. The reason is
for the sake of future insertions and rebuildings, which we discuss next.

Deleting a Center: For this assignment, we do not delete centers.

Inserting/Deleting Sites and Rebuilding: Inserting and deleting sites is essentially the same
as in Programming Assignment 2, but some changes are needed to deal with the contenders.

1To help you, we have added a function to the Rectangle2D class, maxDistanceSq, which compute the maximum
squared distance between a point and a rectangle.

2You can use the function distanceSq in the Rectangle2D class.

3



Because contenders depend only on the cell, not the points within the cell, the insertion and
deletion of sites does not affect the node contenders.

However, rebuilding a subtree will generate new nodes with new cells, and hence with new
contenders. The approach is quite simple, however. Whenever we rebuild the subtree rooted
at some node u, we save a reference to its contender list, u.contenders. We then employ the
rebuilding process from Programming Assignment 2. Finally, we iterate through the saved
contender list, and add each of these centers one by one. (There may be more efficient ways
to process them as a batch, but this is sufficient for full credit.)

Basic-Assignment Requirements: The basic part of the assignment will involve creating a new
class for storing sites, centers, and assignments, called ClusterAssignment. To implement
this, it will also be necessary to make modifications to your SMkdTree.

Let’s first describe this new class, called ClusterAssignment. Its job is to maintain a dynamic
collection of sites and cluster centers and to keep track of the assignment of each site to its
closest cluster center. It supports inserting and deleting sites and adding new centers. It has
the same generic structure as the SMkdTree:

public class ClusterAssignment<LPoint extends LabeledPoint2D> { /* ... */ }

At a minimum, the private data for the class consists of a kd-tree for storing the sites and a
list for storing the centers. (You will probably need to add additional data items as well.)

private SMkdTree<LPoint> kdTree; // storage for the sites

private ArrayList<LPoint> centers; // storage for the centers

The ClusterAssignment class supports the following public functions:

ClusterAssignment(int rebuildOffset, Rectangle2D bbox, LPoint startCenter): The
constructor creates a new structure with an empty kd-tree, which will eventually hold
the sites and it initializes the cluster center set to consist of the single cluster point
startCenter.

void addSite(LPoint site): Inserts a new site in the structure. This will involve inserting
the site in the kd-tree, which may throw an exception if the site is a duplicate of an
existing site. (If any new nodes are created, their contender lists must be created as
well.)

void deleteSite(LPoint site): Deletes an existing site from the structure. This will
involve deleting the site from the kd-tree, which may throw an exception if the site does
not exist. (If this induces a rebuild, the contender lists for all the nodes of the tree will
need to be generated.)

void addCenter(LPoint center): This adds a new center point. The point is added to
the list of centers and it is processed through the kd-tree, adding it to all the nodes for
which this point is a contender.

int sitesSize(): Returns the number of sites in the structure. (This just invokes size()
on the kd-tree.)

int centersSize(): Returns the number of centers in the structure. (This just invokes
size() on the list of center points.)

4



void clear(): Removes all the sites by clearing the kd-tree. It also removes all the centers,
except startCenter, given in the constructor.

ArrayList<String> listKdWithCenters(): This just invokes listWithCenters() (des-
cribed below) on the kd-tree.

ArrayList<String> listCenters(): This produces an ArrayList of strings one per center,
where each string contains the label and coordinates of the center. The list should be
sorted in alphabetic order. An example is shown below, left.

listCenters(): listAssignments():

------------------------- -------------------------------

BWI: (80.0,80.0) [DCA->BWI] distSq = 181.0

ORD: (20.0,60.0) [ATL->ORD] distSq = 200.0

PVD: (90.0,20.0) [JFK->PVD] distSq = 400.0

... ...

ArrayList<String> listAssignments(): This produces an ArrayList of strings, one per
site. Each string contains the site, the associated closest center, and the squared distance
between the site and center. The list should be sorted in increasing order of squared
distance. If there are duplicates, ties should be broken lexicographically by the (x, y)
coordinates of the site. (An example is shown above, right. The first line means that
the site DCA’s closest center is BWI, and the squared distance between these two points
is 181.)

We can compute this as follows. First, we perform a traversal of the kd-tree. (Pick any
traversal order you like.) On arriving at a non-empty external node u, we access its list
of contenders u.contenders, and select the one that minimizes the squared distance to
u.point. If there are ties for the closest, take the contender that has the lexicographically
minimum (x, y) coordinates. Create a triple consisting of the site, the closest center, and
the squared distance, and add it to the list of assignments. On returning, sort this list
by distances, breaking ties as described above.

How to implement these triples? A good way to do this is to implement a new class,
call it AssignedPair. (This could be a standalone public class in AssignedPair.java

or an inner class within ClusterAssignment, its up to you.) Each instance of this class
contains a site (LPoint), a center (LPoint), and the squared distance between them
(double). This class should “implement Comparable<AssignedPair>”. This means
that it must implement a public function “int compareTo(AssignedPair o)”, which
compares this assigned pair to another one. This compare function should be based
primarily on the squared distance, but if two distances are equal, it breaks the tie based
on the lexicographical order of the sites. (This always succeeds, because each site appears
only one assignment, and no two sites have the same coordinates.) Because this class
implements the Comparable interface, you can feed it into Collections.sort to obtain
the sorted list.

Next, let us present the possible modifications to the kd-tree. You will need to make changes
to handle the processing of center points. The following are suggestions. Since these functions
are just going to be used internally by your ClusterAssignment and FarthestFirst classes,
you may add/remove/modify these however you see fit.

5



SMkdTree(int rebuildOffset, Rectangle2D rootCell, LPoint startCenter): The con-
structor has been modified to include a new argument, startCenter. As described ear-
lier, this is the initial center. (This is mainly a convenience, which allows you to assume
that the contender lists are always non-empty.) The initial structure consists of a single
empty external node whose contender list contains a single entry startCenter.

void addCenter(LPoint center): Adds center as a new center and updates all affected
contender lists appropriately. You may assume that center is distinct from any of the
sites that are currently in the tree (in both its label and coordinates). Note however,
that it is possible to delete a site, and add it later as a center. (My version of this
function returned an array-list of sites whose center had changed, but you are free to do
whatever you like.)

void clear(): Clears the kd-tree, removing all the sites. It also removes all the centers,
except startCenter, given in the constructor.

ArrayList<String> listWithCenters(): This is identical to the standard list function,
but for each node we also include a list of the contenders (just the labels) in curly braces.
For the sake of consistency, order the list alphabetically by the label. (The most efficient
way to do this is to maintain the contenders lists sorted by label, but you will get full
credit if you just invoke Collections.sort to sort them each time you perform this
operation.) We show an example below, where we have added centers BWI, ORD, and
PVD.

list(): listWithCenters():

------------------------- -------------------------------

(x=50.0) 6:4 (x=50.0) 6:4 => {BWI ORD PVD}

(y=50.0) 3:1 (y=50.0) 3:1 => {BWI ORD PVD}

(x=70.0) 2:0 (x=70.0) 2:0 => {BWI PVD}

[DCA: (70.0,71.0)] [DCA: (70.0,71.0)] => {PVD}

[SEA: (50.0,51.0)] [SEA: (50.0,51.0)] => {ORD PVD}

... ...

When we are working with much larger examples, the contender lists can be quite long.
If there are 11 or more contenders, just list the first 10 in alphabetical order and add
“...” at the end, for example.

(y=0.0) 30:0 => {ABJ ABV AKR AZR BHX BLI BNI BOY BSK BYK...}

Full Assignment: Farthest-First Traversal: Modern data sets are massive. An important step
in analyzing such large sets involves sketching, where the original data set is represented by a
much smaller subset. The most common approach to sketching is through random sampling,
but there are times when random sampling is not the best option.

Consider, for example, an application where the point set consists of all the cell towers in the
USA, and the question under consideration is “What is the farthest distance from any phone
in the USA to the nearest cell tower?”. A random sample of cell towers would heavily sample
urban regions where there are lots of phones and lots of towers, but it would miss large rural
regions where there are few (see Fig. 3(a)). For this particular query, a better approach would
be to distribute the samples based instead on distance. In particular, we want our sample to
be as close as possible to every cell phone user in the USA (see Fig. 3(b)).

6



(a) (b)

Figure 3: Sketching via (a) random sampling versus (b) distance-based sampling.

A common way to produce such a sketch is based on a concept called the farthest-first traver-
sal. Given a set S of n points such a traversal visits every point of the set exactly once.
The initial point of the traversal, call it c0 ∈ S, can be chosen arbitrarily. The next point
is the point of S that is farthest from c0. The next is the point that maximizes the dis-
tance to the closer of c0 and c1. Generally, suppose that we have already chosen some subset
Ck = {c0, . . . , ck−1}. The next point of the traversal is the point s ∈ S \Ck that is a far away
as possible from any of the points chosen so far, or more formally

ck = argmaxs∈S

{
min
0≤i<k

dist(s, ci)

}
,

where “argmax” means point that achieves the value of the stuff inside the curly braces.
The final sequence {c0, . . . , cn−1} is called the farthest-firt traversal of S (given the starting
point c0). Intuitively, the farthest-first traversal attempts to select the points so that in any
initial subsequence, the points are spread out as much as possible. (It does not succeed in
this formally because this is an NP-hard problem, but it is a provably good approximation.
This is related to a famous approximation algorithm for k-center clustering, called Gonzalez’s
algorithm.)

c0

c1

c2 c3

c4

c5

Figure 4: The first six points in a farthest-first traversal starting at c0.

What does this have to do with distance-based sketching? Well, a provably good way to
obtain a sketch of any desired size m is to compute the entire farthest-first traversal, and
then select the first m points of the traversal. The purpose of Part 2 of the assignment is to
implement an efficient algorithm for computing the farthest-first traversal.

7



Full Assignment: Farthest-First Traversal: For the full assignment, you will extend the basic
part by implementing a class FarthestFirst, which implements an efficient algorithm for the
farthest-first traversal of a point set. This will involve a spatial index (the SMkdTree) and a
priority queue (the WtLeftHeap from Programming Assignment 1). It will also make use of
much of the functionality of the ClusterAssignment class.

The algorithm is given a point set S, which we call the sites, and an starting point c0, which
we will call startCenter. The sites are inserted into a kd-tree, and c0 is the initial cluster
center for all the points. The algorithm proceeds by selecting one of the sites, removing it
from the kd-tree, adding it to the existing set of cluster centers (the points in the traversal),
and updating the closest cluster center for all the sites. Thus, at any time in the process,
the cluster centers consist of the points that have been added to the traversal, and the sites
consist of the points that are waiting to be added to the traversal.

We have almost everything we need to implement this algorithm efficiently. The insertion and
deletion of sites is handled by the kd-tree. Centers can be inserted by invoking the addCenter
function of the ClusterAssignment structure. This in turn causes the kd-tree to update the
closest center contenders for each node.

There is only one operation remaining, that of finding the site that has the largest distance
to its closest cluster center. It would too inefficient to generate all the site-center assignments
and select the one with the largest distance. Instead, we will use our WtLeftHeap data
structure to store all the site-center assignments, sorted by the squared distance between the
site and its associated center.

Recall that when discussing listAssignments() above, we suggested defining an inner class
AssignedPair within ClusterAssignment for storing site-center-distance triples. We can
create an instance of WtLeftHeap, where the keys are squared distances (double) and the
values are site-center pairs (AssignedPair).3 The heap allows us to efficiently extract the
assigned pair with the maximum distance. When we add the new center point to the traversal,
a number of sites may discover that they are closer to the newly inserted center. To handle
this, we need to perform an updateKey operation on all of these sites. This means that we
need make use of locators to identify where each assigned pair appears in the heap. We need
a place to store these locators. Our solution will be to use a Java HashMap to map site labels
to heap locators.

We can describe a single step of the farthest-first traversal. Initially, we have the starting
center c0 and a collection of points (sites) stored in a kd-tree. (The point c0 itself is not
stored in the kd-tree.) In general, we will have computed the points in a partial traversal
Ck = {c0, c1, . . . , ck−1}. Call these points the centers. The remaining points of S, called
sites, are stored in the kd-tree. Every site is assigned to its closest center, and each of these
site-center pairs has an associated AssignedPair for it. These pairs are stored in a max heap,
sorted by the squared distance between the site and its center. Finally, every entry in the

3You might wonder why we chose to use the squared distance as the key, rather than just using the comparator
within the AssignedPair class. The latter is really the better approach, because it provides us with automatic tie-
breaking when squared distances are equal. However, there are subtle programming issues that can arise when the
key and value are the same. We have decided to avoid these issues by keeping keys and values distinct. We will avoid
distance ties in our test data.

8



heap has a locator, and these locators are stored in the Java HashMap, where the key is the
site’s label. We proceed as follows.

� If there are no more remaining sites (the kd-tree is empty), we are done, and the traversal
is complete.

� Otherwise, extract the site-center pair from the heap with the maximum squared dis-
tance. Let s denote the associated site.

� Delete s from the kd-tree. This former site now becomes a new center, called ck.

� Add ck to the end of the traversal.

� Update kd-tree contenders appropriately for the addition of ck. Let U = {s1, . . . , sm}
denote sites of the kd-tree whose closest center has changed to ck as a result. For each
element si in U , do the following:

– Use si’s code to access its entry in the hash-map to obtain its heap locator.

– Using this locator, update the key of si’s heap entry to the squared distance between
si and ck.

Full-Assignment Requirements: For the full assignment, we will create a new class, called
FarthestFirst. You can start by making a copy of ClusterAssignment and make modifi-
cations to it. This class has the same generic structure as the SMkdTree:

public class FarthestFirst<LPoint extends LabeledPoint2D> { /* ... */ }

At a minimum, the private data for the class consists of a kd-tree for storing the sites and
a list for storing the centers. (You will probably need to add additional data items as well.)
As mentioned earlier, the class AssignedPair can be either be an inner class or a standalone
class. It’s up to you.

public class FarthestFirst<LPoint extends LabeledPoint2D> {

private class AssignedPair implements Comparable<AssignedPair> {

private LPoint site; // the site

private LPoint center; // its assigned center

private double distanceSq; // squared distance to the assigned center

// ... addtional data as needed

}

private LPoint startCenter; // the initial center

private WtLeftHeap<Double, AssignedPair> heap; // heap for assigned pairs

private HashMap<String, ...> map; // a map used for saving heap locators

private SMkdTree<LPoint> kdTree; // kd-tree for sites

private ArrayList<LPoint> traversal; // the traversal

The role played by the set of centers in the basic assignment is taken by the traversal object.
Here are the following public functions of FarthestFirst:

public FarthestFirst(int rebuildOffset, Rectangle2D bbox, LPoint startCenter):

The constructor creates a new structure with an empty kd-tree, which will eventu-
ally hold the sites and it initializes the traversal to consist of the single cluster point
startCenter.

9



void addSite(LPoint site): Inserts a new site in the structure. This will involve inserting
the site in the kd-tree, which may throw an exception if the site is a duplicate of an
existing site. (If any new nodes are created, their contender lists must be created as
well.) Let center denote its closest center point. We create a new AssignedPair

consisting of (site, center) which we add to the heap, where the key is the squared
distance between them. We save the locator in the map.

LPoint extractNext(): Performs one step of the farthest-first traversal (described in the
bulleted list above). If there are no remaining sites (the kd-tree is empty), it returns
null. Otherwise, it performs the various described actions (deletion from the kd-tree,
adding to the traversal, updating the kd-tree contenders and the updating the keys of
affected sites). Finally, it returns the point that has just been added to the traversal.

int sitesSize(): Same as for ClusterAssignment.

int traversalSize(): (Analogous to centersSize for ClusterAssignment.) Returns the
number of centers in the traversal. (This just invokes size() on the traversal list.)

void clear(): Clears everything as in ClusterAssignment and also clears the hash map,
the heap, and the traversal.

ArrayList<String> listKdWithCenters(): Same as for ClusterAssignment.

ArrayList<LPoint> getTraversal(): This simply returns the ArrayList containing the
points of the traversal.

ArrayList<String> listCenters(): Same as for ClusterAssignment, except using the
traversal rather than the list of centers.

ArrayList<String> listAssignments(): Same as for ClusterAssignment.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You will need
to fill in the implementations of the SMkdTree.java, WtLeftHeap.java, ClusterAssignment
and (for the full assignment) FarthestFirst.

As in Programming Assignment 2, we will provide utilities (e.g., Point2D and Rectangle2D).
You should not modify any of the other files, but you can add new files of your own. For
example, you may want to create additional classes, like AssignedPair.java, or if you want
to add additional functions to any of the classes, such as Point2D or Rectangle2D, it would
be preferable to create an entirely new class (e.g., MyRect2D), which you will upload with
your submission.

As with the previous assignment, the package “cmsc420 s23” is required for all your source
files. As usual, we will provide a driver programs (tester and command-handler) for processing
input and output. You should not modify the signature of the public functions, but you are
free to set up the internal structure however you like.

Efficiency requirements: (10% of the final grade) Your functions for updating contender lists
should operate efficiently. Imagine that your kd-tree has millions of points and your contender
lists can contain thousands of entries. Java provides built-in functions to perform operations
on basic data structures (array-lists, linked-lists, hash-maps, etc.) but these are not all equally
efficient. Based on your knowledge of data structures, you should be able to determine how
efficient these functions are and structure your program to apply them appropriately.

10

http://www.cs.umd.edu/class/spring2023/cmsc420-0201/project.html


Also, your program should avoid visiting nodes that cannot possibly be affected by the op-
eration. For example, if you are inserting a new center, you should only visit nodes that
are close enough to the newly added center that they might reasonably need this center as a
contender. We are not going to apply a rigid policy in grading, but we will deduct points if
your algorithm visits nodes that are clearly irrelevant to the operation.

Style requirements: (5% of the final grade) The style requirements are essentially the same as
for the previous assignment. Your code should be relatively clean, and comments should
be provided to explain important functions. You may refer to our canonical solutions for
guidance (but you do not need to be quite as excessive in commenting as I am).

Testing/Grading: As always, we will provide some sample test data and expected results along
with the skeleton code.

As before, we will be using Gradescope’s autograder for grading your submissions. Unless you
created your own additional files, you should only submit only the four files mentioned above
(SMkdTree.java, WtLeftHeap.java, ClusterAssignment.java and (for the full assignment)
FarthestFirst.java). If you created any additional files for utility objects, you will need to
upload those as well.

Challenge Problem: For the class ClusterAssignment, implement a new function,

void deleteCenter(LPoint center) throws Exception

that deletes the given center point. If this point does not exist among the current set of
centers, an Exception is thrown with the message "Deletion of nonexistent center".
This removes center from all the contender lists in the kd-tree, and updates these lists.
Note that deleting a center can increase the Rmin value for a node, and this can result in
“resurrecting” contenders that were filtered out by center earlier in the process.

At the top of your submission, add a comment indicating that you attempted this operation,
and present a clear explanation (in plain English) of how you implemented this function.

Hint: For full credit, this should be implemented in an efficient manner. There is no clear
optimum strategy for doing this, and any solution is likely to involve tradeoffs. There are
some pitfalls you should avoid.

� First, deleting a center in one region of the kd-tree should not require visiting all the
nodes of the kd-tree. Ideally, your code should only need to visit the nodes where center
was among its list of contenders. (Or, if it does visit a node that does not contain center

among its contenders, it should discover this and not recurse on its children.)

� Second, as mentioned above, deleting center from the contender list of some node
may result in a need to resurrect contenders that were filtered out earlier. It would
be inefficient to consider all possible centers as candidates for resurrection. (As an
example, if you remove a cell phone tower in Maryland, you should not need to consider
cell phone towers in California as candidates for replacing it.) Consider more efficient
ways to identify a smaller subset of local contenders.

This is an open-ended design problem, and there really is no single correct answer. Explain
in your leading comment what strategy you decided upon.

11


