
CMSC 420 Dave Mount

CMSC 420: Lecture 5
Priority Queues and Heaps

Priority Queues: A priority queue is an abstract data structure storing key-value pairs. The basic
operations involve inserting a new key-value pair (where the key represents the priority) and
extracting the entry with the smallest priority value. These operations are called insert and
extract-min, respectively. In contrast to a standard queue (first-in, first-out) a priority queue
extracts entries according to their priority. As an example, irrespective of the order in which
passengers arrive at the gate, airlines often board them according to row number from the
rear of the plane.

Priority queues can be implemented in many different ways. For example, you could maintain
a simple linear list of key-priority pairs. But how are these to be sorted? If you sort by arrival
order, then insertion is fast, but extraction requires checking all the priorities, which takes
O(n) time. On the other hand, if you sort by priority, extraction is fast, but insertion involves
determining where to put the new item, and this (naively) takes O(n) time.

The question is whether it is possible to achieve both operations in O(log n) time. There is a
collection of related tree-based data structures that support these times. Because they share
the same general structure, they are all called heaps.

Heaps: At its most generic, a heap is a rooted (typically binary) tree where each node stores a
key-value pair. These data structures all have one common aspect, other than the root node,
the priority of every node is greater than or equal to its parent (see Fig. 1). A tree that
satisfies this property is said to be in heap order. (This is sometimes called a min heap.
Reversing the order results in a max heap. The max heap is usually used in HeapSort.)

10

3

17

8

18

12

7

33

2412

6

Fig. 1: A (min) heap-ordered binary tree. (Only priorities are shown.)

Note that in such a tree, the smallest priority item is always at the root. They main questions
are how to maintain this structure as elements are inserted and extracted.

There are many variants of the heap data structure. If you learned about the sorting al-
gorithm called HeapSort, then you no doubt learned the the simplest of these structures,
called the binary heap (which we will present below). But when additional operations are
desired (for example, altering individual priority values or merging two heaps together), there
are alternative data structures that are more efficient than the binary heap. This has given
rise to data structures with various esoteric names such as binomial heaps, Fibonacci heaps,
pairing heaps, quake heaps, leftist heaps, and skew heaps. (For further information, see this
Wikipedia article on Heaps.) In this lecture, we will discuss just a couple of these, standard
binary heaps and leftist heaps.

Lecture 5 1 Spring 2023

https://en.wikipedia.org/wiki/Heap_(data_structure)


CMSC 420 Dave Mount

Binary Heaps: The data structure used in HeapSort is called a binary heap. It is a venerable
data structure, invented by J. W. J. Williams way back in 1964. It has a number of very
elegant features. Most notably, even though it is a binary tree, it can be stored in an array,
without the needs for dynamic memory management or pointers.

Recall from our lecture on trees that a binary tree is complete (sometimes called left-complete)
if every level of the tree is completely filled, except possibly the bottom level, which is filled
from left to right. It is easy to verify that a complete binary tree of height h has between 2h

and 2h+1 − 1 nodes, implying that a tree with n nodes has height O(log n) (see Fig. 2). (We
leave these as exercises involving geometric series.)

12

22

6 14

217

3

18 8 13 24

19

3 6 14 12 7 21 19 18 22 8 13
0 1 2 3

1

2 3

4 5 6

8 10 12

7

9 11

4 5 6 7 8 9 10 11 12

24
= n

. . .

A

Fig. 2: A heap-ordered complete binary tree and its mapping to an array.

The regular structure allows us to use arithmetic to identify tree relations. Given a complete
tree with n elements stored in an array A[1..n], and for any index 1 ≤ i ≤ n, we can access
its immediate relations:

� left(i): if (2i ≤ n) then 2i, else null

� right(i): if (2i+ 1 ≤ n) then 2i+ 1, else null

� parent(i): if (i ≥ 2) then ⌊i/2⌋, else null

Note that we are effectively wasting element A[0] by using this scheme. It is possible to
modify the indexing rules to start with index zero, but this makes the access formulas a bit
more complicated.

Binary Heap Insertion: Let us assume that our binary heap currently contains n elements and
is stored in the array A[1..n]. (To initialize the structure, we simply set n ← 0.) To insert
a new key x into the binary heap, we increment n and add the new item at the end of the

13

12

22

6 14

217

3

18 8 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11 13

12

22

6 14

7

3

18 8 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

13

12

22

6

21

7

3

18 8 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

219

!!

!!

9

9

14

13

12

22

6

21

7

3

18 8 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

14

9

insert(9)

OKfinal

Fig. 3: Example of inserting a new element (9) into a binary heap and sifting up.

Lecture 5 2 Spring 2023



CMSC 420 Dave Mount

array. We then “sift” the new key up the tree by swapping it with its parent as long as its
priority is smaller than its parent, or until hitting the root, whichever comes first (see Fig. 3).

The insertion code is presented in the following code block. The code is slightly different
from our description. To make the code a bit faster, rather than storing the new key and
swapping, we copy entries down and insert the new key at the end. Clearly, the running time
is proportional to the height of the tree, which we have shown is O(log n).

Binary-Heap Insertion
void insert(Key x) { // insert new key x in heap

n += 1 // increment tree size

i = sift-up(n, x) // sift x up the tree to its final position

A[i] = x // store x in the heap

}

int sift-up(int i, Key x) { // sift x up to its proper position

while(i > 1 && x < A[parent(i)]) { // x’s parent exists and is too large?

A[i] = A[parent(i)] // move parent down (and x up)

i = parent(i)

}

return i

}

Binary Heap Extract-Min: To perform extract-min, we already observed that the minimum
element is at the root. But, if we remove this element, we have a hole that needs to be filled.
There is an elegant method to fill this hole. We first save the root element as our final result.
We then copy the nth element of the array to index 1 and decrement the value of n. Finally,
we sift the new root element down the tree to restore the heap property. To sift an element
down, we first determine which of its two children has the smaller priority. We compare the
current node with this smaller child. If the child has a smaller priority than the current node,
then we swap them. We repeat this along the we have a child and the swap takes place. The
process is illustrated in Fig. 4) and the code is presented just below.

Mergeable Heaps: The standard binary heap data structure is an simple and efficient data struc-
ture for the basic priority queue operations insert and extract-min. Suppose that we have an
application in which in addition to insert and extract-min, we want to be able to merge the
contents of two different queues into one queue. As an application, suppose that we have a
two-processor computer system and each processor has a priority queue of processes waiting
to be executed. If one of the processors fails, we need to merge the two queues so that the
remaining processor can handle all of them.

Let’s introduce a new operation H = merge(H1, H2), which takes two existing priority queues
H1 and H2, and merges them into a new priority queue, H. This operation is destructive,
which means that the priority queues H1 and H2 are destroyed in order to form H.

We would like to be able to implement merge in O(log n) time, where n is the total number
of keys in priority queues H1 and H2. Unfortunately, it does not seem to be possible to
do this with the standard binary heap data structure because of its highly rigid array-based
structure.

Leftist Heaps: We introduce a new data structure called a leftist heap, which supports the oper-
ations insert(x), extract-min(), and merge(H1,H2). Like the binary heap, it is a binary

Lecture 5 3 Spring 2023



CMSC 420 Dave Mount

13

12

22

6

21

7

18 8 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

14

9
!!3

3return result:

12

22

7

18 8 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

14

9

21

6

12

22

7

18 8 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

14

9

6

21

12

2218 8 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

14

9

6

7
!!

21
!!

12

2218 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

14

9

6

7

8

21

12

2218 13 24

19

1

2 3

4 5 6

8 10 12

7

9 11

14

9

6

7

8

21

final

Fig. 4: Example of extract-min. We save the root element (3) as the final result, and copy the last
element (21) into the root and decrement n. We then repeatedly sift it down by swapping it with
the smaller of its two children until either reaching the leaf level or until both of its children are at
least as large.

Binary-Heap Extract-Min
Key extract-min() { // extract the minimum from heap

if (n == 0) Error - Empty heap

Key result = A[1] // save final result

Key z = A[n--] // get element to sift (and decrement n)

i = sift-down(1, z) // sift z from root to its final position

A[i] = z // move z into its proper position

return result

}

int sift-down(int i, Key z) { // sift z down to its proper position

while (left(i) != null) { // repeat until arriving at a leaf

u = left(i); v = right(i) // i’s left and right children

if (v != null && A[v] < A[u]) // swap so that u has smaller key

u = v

if (A[u] < z) { // sift z by moving A[u] up

A[i] = A[u]

i = u

} else break // done sifting

}

return i // return z’s proper position

}

Lecture 5 4 Spring 2023



CMSC 420 Dave Mount

tree, but it is stored as a standard binary tree with left and right child pointers. In order
to support operations in O(log n) time, we want the tree’s height to be O(log n). Our data
structure will have a weaker property, which is where the term “leftist” comes from.

Leftist Heap Property: Define the null path length, denoted npl(v), of any node v to be the
length of the shortest path to reach a node with a null child pointer. The value of npl(v)
can be defined recursively as follows (see Fig. 5).

npl(v) =

{
-1 if v = null,
1 + min(npl(v.left), npl(v.right)) otherwise.

Note that the npl value of any (non-null) node is at least zero. The npl of a node is very
different from its height. Trees with very large heights can have very small npl value.

Leftist: A node v is leftist if npl(v.left) ≥ npl(v.right).

Leftist heap: Is a binary tree whose keys are heap ordered (parent key is less than or equal
to child key) and whose nodes’ npl values all satisfy the leftist property.

10

3
1

0

17

8

18

37

7

33

24

12

6
0

1

0

0

0 0

0

1

1

17

8

18

37

7

33

24

12

6 10

3

0

1

1

00 0

0

0

1

1

(a)

Leftist

(b)

swap

−1

Not leftist!

!!

!!
0 −1

swap

1

0

1

2

0

0

0 0

0

1

1

(c)

0

Fig. 5: Null path lengths and the leftist property.

For example, the two trees shown in Fig. 5 are both heap-ordered, but the tree in part
(b) is not leftist because node 6’s left child has a smaller npl value than its right child.
Swapping these two children as shown in (c) yields a valid leftist heap.

Note that any tree that does not satisfy leftist property can always be made to do so by
swapping left and right subtrees at any nodes that violate the leftist property. Observe that
this does not affect the heap-order property. The key to the efficiency of leftist heap operations
is that there exists a short (O(log n) length) path in every leftist heap, namely the rightmost
path. Let n denote the number of nodes in the heap and let r denote the number of nodes
on the rightmost path. We want to show that r = O(log n). More precisely, we can show
that r ≤ lg(n + 1). By exponentiating both side, this is clearly equivalent to showing that
n ≥ 2r − 1. The next lemma shows this.

Lemma: Consider any leftist heap with n ≥ 1 nodes and r nodes along its rightmost path.
Then n ≥ 2r − 1.

Proof: The proof is by induction on the number of nodes in the tree.

Basis: (n = 1) If there is only one node in the tree, then there is only one node on the
rightmost path. Thus, r = 1. We therefore have, n = 1 = 21 − 1 = 2r − 1, as desired.

Lecture 5 5 Spring 2023



CMSC 420 Dave Mount

Step: Let n ≥ 2 denote the number of nodes in the tree, and let us make the (strong)
induction hypothesis that any tree with strictly fewer than n nodes satisfies the lemma.

Remove the root of the tree. This results in subtrees. Let nL be the number of nodes
in the left subtree and let nR denote the number of nodes in the right subtree. Both
subtrees have fewer than n nodes, and therefore we can apply the induction hypothesis
to them.

Let r denote the number of nodes in the rightmost path of the original tree. It follows
that the right subtree has r − 1 nodes in its rightmost path, and thus by the induction
hypothesis, we have nR ≥ 2r−1 − 1. We cannot infer exactly how many nodes are in
the rightmost path of the right subtree, but by the leftist property, it must be at least
r − 1. (If it were smaller, then the NPL of the left subtree would be smaller than the
NPL of the right subtree, which would violate the leftist property.) Therefore, we have
nL ≥ 2r−1 − 1.

Putting this all together, we have

n = 1 + nL + nR ≥ 1 + (2r−1 − 1) + (2r−1 − 1) = 2 · 2r−1 − 2 + 1 = 2r − 1,

as desired.

Corollary: The rightmost path of a leftist binary tree with n nodes has length O(log n).

Class Structure: Before discussing how merging is performed in leftist heaps, it would be good
to give an overview of the class structure (see the code block below). The class LeftistHeap
is generic, and its declaration is templated by the key type Key. Because we need to compare
keys, we inform the compiler that the key type must implement the Comparable interface.

The class consists of three major components, a class declaration for the node type, the
private data, and the various public and private methods. The node, called LHNode stores the
key, the child pointers, and the npl value for this node. LeftistHeap has one piece of private
data, namely the root of the tree, and the class constructor just sets the root to null, thus
generating an empty tree. This is followed by the other public and private members. These
include the public methods insert, extractMin, and mergeWith. We have omitted all the
details, including addition private helper methods.

Leftist Heap Class Structure
public class LeftistHeap<Key extends Comparable<Key>> {

private class LHNode { // a node in the tree

Key key; // key

LHNode left, right; // children

int npl; // null path length

}

private LHNode root; // root of the tree

public LeftistHeap() { root = null; } // constructor

public void insert(Key x) { ... } // insert

public Key extractMin() { ... } // extract-min

public void mergeWith(LeftistHeap<Key> H2) { ... } // merge with H2

}

Lecture 5 6 Spring 2023



CMSC 420 Dave Mount

The public merge method that performs the merger is called mergeWith, and it merges this
heap with another heap H2. It invokes a recursive helper function (given below) and updates
the root to point to the resulting tree. Note that H2 is destroyed in the process.

public void mergeWith(LeftistHeap H2) { // merge this heap with H2

root = merge(this.root, H2.root) // invoke the helper and update root

H2.root = null // H2 is destroyed in the process

}

Merging Leftist Heaps: All that remains, is to show how to implement the helper function
merge(u, v). This takes two nodes u and v, one from each of the heaps, merges the subtrees
rooted at these two nodes, and returns a pointer to the root node of the merged tree.

The formal description of the procedure is recursive. However it is somewhat easier to under-
stand in its nonrecursive form, which operates in two separate phases. In the first phase, we
walk down the rightmost paths of both subtrees. By the heap ordering, the keys along each
of these paths form an increasing sequence. We merge these paths into a single sorted path
by selecting the one with the smaller key value (see Fig. 6).

26

17

8

18

37

7

33

2418

12

6

21

10

14

23

3

0

1

2

0

0

0

0 0

0

0

0

1

1

10
26

17

8

1837

7

33

2418

12

6

21

10

14

23

3

0

1

21

0

0

0

0 00

0

0

1 10

0

Merge right paths

2
update npl’s

Fig. 6: Merging leftist heaps (Phase-1): Merge rightmost paths by key.

Each node of the tree contains an additional field npl, which stores the npl value for this
node. After merging the right paths, we update the npl values. After the merger is done,
the leftist property may be violated along this rightmost path. To remedy this, we perform a
second phase, which swaps left and right children to restore the leftist property. (Recall that
this swapping preserves the heap ordering.) This is illustrated in Fig. 7.

26

17

8

18

37

7

33

2418

12

6

21

10

14

23

3

0

1

2

2

0

0

0

0 0

0

0

0

0

1

1

1

26

17

8

18

37

7

33

2418

12

6

21

10

14

23

3

0

1

2

0

0

0

0 0

0

0

0

1

1

10

swap subtrees if

left.npl < right.npl2

Fig. 7: Merging leftist heaps (Phase-2): Swap left-right to restore leftist property.

Lecture 5 7 Spring 2023



CMSC 420 Dave Mount

Merge two leftist heaps
LHNode merge(LHNode u, LHNode v) { // recursive helper function

if (u == null) return v // if one is empty, return the other

if (v == null) return u

if (u.key > v.key) swap(u, v) // swap so that u has smaller key

if (u.left == null) u.left = v // u must be a leaf in this case

else { // merge v on right and swap if needed

u.right = merge(u.right, v) // recursively merge u’s right subtree

if (u.left.npl < u.right.npl) { // fail the leftist property?

swap(u.left, u.right) // swap to restore leftist

}

u.npl = u.right.npl + 1 // update npl value

}

return u // return the root of final tree

}

The complete code is given in the code block. It is expressed in recursive form, and both
phases are combined into a single phase. First, it deals with the trivial cases if either u or v
is empty (null), in which case it simply returns the other tree as the answer. It then swaps
u and v so that u contains the smaller key. If u has no left child (which by leftism implies
it has no right child), then we attach the entire subtree v as the left child of u. (Leftism
demands that we put it on the left side.) We then recursively merge the remainder of u’s
right subtree with v’s tree. After this returns, we swap the left and right subtrees if needed
to satisfy the leftist property at u. Finally, we update u’s npl value and return u as the final
result. (I would recommend tracing it out on the above example from Fig. 6 to see that it
produces the same result as in Fig. 7.)

Theorem: Given two leftist heaps of total size n, the above merge procedure runs in time
O(log n).

Proof: The merging procedure takes time proportional to the rightmost paths of the two
trees. Since both trees have at most n nodes, this is O(log n).

We have not explained two important operations, insert and extact-min. We will leave
these as an exercise, but as a hint, both can be implemented in O(log n) time by performing
a single invocation of merge together with operations that take only constant time.

Lecture 5 8 Spring 2023


