
CMSC 420 Dave Mount

CMSC 420: Lecture 9
Red-black and AA trees

“A rose by any other name . . . ”: In the previous lecture, we presented the 2-3 tree, which
allows nodes of variable widths. In this lecture, we will explore two variations on this idea,
red-black trees and AA trees. Both of these structures arise by converting variable width 2-3
nodes into the classical binary tree structure. (Before reading this lecture, please review the
material on 2-3 trees from the earlier lecture.)

Red-Black Trees: While 2-3 trees provide an optimal O(n) space and O(log n) time solution to
the ordered dictionary problem, they suffer from the shortcoming that they are not binary
trees. This makes programming these trees a bit messier.

As we saw earlier in the semester, there are ways of representing arbitrary trees as binary
trees. This inspires the question, “Can we encode a 2-3 tree as an equivalent binary tree?”
Unfortunately, the first-child, next-sibling approach presented earlier in the semester will not
work. (Can you see why not? At issue is whether the inorder properties of the tree hold
under this representation.)

Here is a simple approach. First, there is no need to modify 2-nodes, since they are already
binary-tree nodes. To represent a 3-node as a binary-tree node, we create a two-node combi-
nation, as shown in Fig. 1(a) below. Observe that the 2-3 tree ordering (A < b < C < d < E)
is preserved in the binary version. The 2-3 tree shown in the inset would be encoded in the
manner shown in Fig. 1(b).
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Fig. 1: Encoding a 2-3 tree as an equivalent binary tree.

In the figure, we highlighted node pairs from 3-nodes. To implement this, we will label each
of “second nodes” of the 3-nodes as red and label all the other nodes as black, we obtain a
binary tree with both red and black nodes. (Of course, this label can be as simple as a status
bit, which indicates whether the node is red or black.) It is easy to see that the resulting
binary tree satisfies the following red-black tree properties:

(1) Each node is either red or black.

(2) The root is black. (Since it either arises as a 2-node or the top node of a 3-node.)

(3) All null pointers are treated as if they point to black nodes (a conceptual convenience).

(4) If a node is red, then both its children are black. (Since the children of a 3-node are
either 2-nodes or the top of another 3-node pair.)
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(5) Every path from a given node to any of its null descendants contains the same number
of black nodes. (Since all leaf nodes in a 2-3 tree are at the same depth.)

A binary search tree that satisfies these conditions is called a red-black tree. It is easy to see
that the above encoding of any 2-3 tree to this binary form satisfies all of these properties.
(On the other hand, if you just saw this list of properties without having seen the 2-3 tree,
it would seem to be very arcane!) Because 2-3 trees have O(log n) height, the following is an
immediate consequence:

Lemma: A red-black tree with n nodes has height O(log n).

Equivalent? Well, no: While our 2-3 tree encoding yields red-black trees, not every red-black
tree corresponds to our binary encoding of 2-3 trees. There are two issues. First, the red-black
conditions do not distinguish between left and right children, so a 3-node could be encoded
in two different ways in a red-black tree (see Fig. 2(a)). In addition, the red-black condition
allows for the sort of structure in Fig. 2(b), which clearly does not correspond to a node of a
2-3 tree.
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Fig. 2: Color combinations allowed by the red-black tree rules.

So, red-black trees are not equivalent to 2-3 trees, but they are in fact equivalent to a minor
variant, called 2-3-4 trees. A 2-3-4 tree is a simple generalization of a 2-3 tree to allow for
4-nodes (that is, having four children and three keys). We will leave as an exercise the fact
that split, merge, and adoption (key rotation) utilities for 2-3 trees can be easily generalized
to 2-3-4 trees. Red-black trees as defined above correspond 1–1 with 2-3-4 trees. Red-black
trees are important as the basis of TreeMap class in the java.util package.

While red-black trees have a reputation as being the fastest of the balanced binary-tree data
structures, they are a bit messy to code, owing to the various cases that can arise. In this
lecture, we will study a simplified variant of red-black trees, called AA trees.

AA trees (red-black trees simplified): In an effort to simplify the complicated cases that arise
with the red-black tree, in 1993 Arne Anderson developed a restriction of the red-black tree.
He called his data structure a BB tree (for “Binary B-tree”), but over time the name has
evolved into AA trees, named for the inventor (and to avoid confusion with another popular
but unrelated data structure called a BB[α] tree).

Anderson’s idea was to allow the conversion described above between 2-3 trees and red-black
trees, and to rule out the alternative forms shown in Fig. 2. The additional rule that enforces
this is:

(6) Each red node can arise only as the right child of a black node.

The edge between a red node and its black parent is called a red edge, and is shown as a
dashed red edge in our figures. Note that, while AA trees are simpler to code, experiments
show that are a bit slower than red-black trees in practice.
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Arne-Anderson was focused on making the code for the AA tree as simple as possible. To
help, the AA tree has the following two noteworthy features:

No null pointers: Instead, we create a special sentinel node, called nil (see Fig. 3(a)),
and every null pointer is replaced with a pointer to nil. This node is declared to be
black and nil.left == nil and nil.right == nil While a tree may have many null

pointers, there is only one nil node allocated, with potentially many incoming pointers.

Why do this? This simplifies the code because the left and right children always refer to
actual nodes. For example, for any node p, we could write p.right.right.right.right
without worrying about our program aborting due to dereferencing a null pointer.
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Fig. 3: AA trees: (a) the nil sentinel node, (b) the AA tree for a 2-3 tree.

Levels, not colors: Rather than using colors to distinguish node types, each node p stores
a level number, denoted p.level (see Fig. 3(b)). Intuitively, the level number encodes
the level of the associated node in the 2-3 tree. Formally, nil node is at level zero.1 We
can use levels to define colors, by the following rule:

A node is red if and only if it’s at the same level as its parent. (The root is never red)

When drawing AA trees, we will draw broken horizontal lines to indicate where levels
change. How do we know a node’s color? We declare a node p to be red if p and its
parent are both on the same level. When we draw our figures, we will include
the colors to emphasize this (see Fig. 3(b)), but the colors are not actually
stored in the tree.

AA tree operations: Since an AA tree is essentially a binary search tree, the find operation
is exactly the same as for any binary search tree. Insertions and deletions are performed
in essentially the same way as for AVL trees: first the key is inserted or deleted at the leaf
level, and then we retrace the search path back to the root and restructure the tree as we
go. As with AVL trees, restructuring essentially involves rotations. For AA trees the two
restructuring operations go under the special names skew and split. They are defined as
follows:

skew(p): If p is black and has a red left child, rotate so that the red child is now on the
right (see Fig. 4(a)). The level of these two nodes are unchanged. Return a pointer to
upper node of the resulting subtree.

1You might protest with this choice. We have been very careful so far in defining the height of an empty tree as
−1 and nil is basically playing the same role as an empty tree. Here I am just following Arne Anderson’s convention.
If you prefer to set nil’s level to −1, feel free. Then the other levels will start from 0.
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Fig. 4: AA restructuring opertions (a) skew and (b) split. (Afterwards q may be red or black.)

split(p): If p is black and has a chain of two consecutive red nodes to its right (that is,
p.level == p.right.right.level), split this triple by performing a left rotation at p
and promoting p’s right child, call it q, to the next higher level (see Fig. 4(b)). Because
q is pushed up a level, it is quite likely to be red now. (The only exception is if p was
the root, and now q is the new root.)

In the figure, we have shown p as a black node, but in the context of restructuring p may be
either red or black. As a result, the node q that is returned from the operations may either be
red or black. The implementation of these two operations is shown in the code block below.

AA tree skew and split utilities
AANode skew(AANode p) {

if (p == nil) return p;

if (p.left.level == p.level) { // red node to our left?

AANode q = p.left; // do a right rotation at p

p.left = q.right;

q.right = p;

return q; // return pointer to new upper node

}

else return p; // else, no change needed

}

AANode split(AANode p) {

if (p == nil) return p;

if (p.right.right.level == p.level) { // right-right red chain?

AANode q = p.right; // do a left rotation at p

p.right = q.left;

q.left = p;

q.level += 1; // promote q to next higher level

return q; // return pointer to new upper node

}

else return p; // else, no change needed

}

AA-tree insertion: As mentioned above, we insert a node just as for a standard binary-search
tree and then work back up the tree restructuring as we go. What sort of restructuring is
needed? Recall first that (following the policies of 2-3 trees) all leaves should be at the same
level of the tree. To achieve this, when the new node is inserted, we assign it the same level
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number as its parent. This is equivalent to saying that the newly inserted node is red (see
Fig. 5(a)).
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Fig. 5: AA insertion: (a) Initial tree, (b) after insertion, (c) after skewing, (d) after splitting.

The first problem might arise is that this newly inserted red node is a left child, which is
not allowed (see Fig. 5(b)). Letting p denote the node’s parent, this is easily remedied by
performing skew(p) (see Fig. 5(c)). Let q be the pointer to the resulting subtree.

Next, it might be that p already had a right child that was red, and the skew could have
resulted in a right-right chain starting from q. (This is equivalent to having a 4-node in a 2-3
tree.) We remedy this by invoking the split operation on q (see Fig. 5(d)). Note that the split
operation moves the middle node of the chain up to the next level of the tree. The problems
that we just experienced may occur with this promoted node, and so the skewing/splitting
process generally propagates up the tree to the root.

The insertion function is provided in the following code block. Observe that (as with the AVL
tree) the function is almost the same as the standard (unbalanced) binary tree insertion except
for the final rebalancing step, which is performed by the call “return split(skew(p))”.
(This simplicity is the principle appeal of AA trees over traditional red-black trees.)

AA Tree Insertion
AANode insert(Key x, Value v, AANode p) {

if (p == nil) // fell out of the tree?

p = new AANode(x, v, 1, nil, nil); // ... create a new leaf node here

else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left); // ...insert left

else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right); // ...insert right

else

throw DuplicateKeyException; // duplicate key!

return split(skew(p)); // restructure and return result

}

An example of insertion is shown in Fig. 6. (See the lecture on 2-3 trees for the analogous
process.)

AA-tree deletion: As usual deletion is more complex than insertion. If this is not a leaf node,
we find a suitable replacement node. (This will either be the inorder predecessor or inorder
successor, depending on the tree’s structure.) We copy the contents of the replacement
node to the deleted node and then we proceed to delete the replacement. After deleting the
replacement node (which must be a leaf), we retrace the search path towards the root and
restructure as we go.

Lecture 9 5 Spring 2023



CMSC 420 Dave Mount

2

1 3 9 14

4

8
12

5
7

insert(6)

2

1 3 9 14

4

8
12

5
7

6

skew

2

1 3 9 14

4

8
12

5
6

7!!

2

1 3 9 14

4

8
12

5

6

!!

!!2

1 3 9 14

4

6
8

5

12

split

7

4

6

8

5 7

2

1 3

12

9 14

split skew

7

!!

Fig. 6: Example of AA-tree insertion. (Remember, a node is red if it is at the same level as its
parent.)

Before discussing deletion, let’s first consider a useful utility function. In the process of
deletion, a node can lose one of its children. As a result, we may need to decrease this
node’s level in the tree. To assist in this process we define two functions. The first, called
updateLevel(p), updates the level of a node p based on the levels of its children. Every
node has at least one black child, and therefore, the ideal level of any node is one more than
the minimum level of its two children. If we discover that p’s current level is higher than
this ideal value, we set it’s level to the proper value. If p’s right child is a red node (that is,
p.right.level == p.level prior to the adjustment), then the level of p.right needs to be
decreased as well. This is shown in the code block below.

AA-Tree update level utility
void updateLevel(AANode p) { // update p’s level

int idealLevel = 1 + min(p.left.level, p.right.level);

if (p.level > idealLevel) { // is p’s level too high?

p.level = idealLevel; // decrease its level

if (p.right.level > idealLevel) // is p’s right child red?

p.right.level = idealLevel; // ...pull it down as well

}

}

When the restructuring process arrives at a node p, we first fix its level using updateLevel(p).
Next we need to skew to make sure that any red children are to its right. Deletion is com-
plicated in that we may generally need to perform up to three skew operations to achieve
this: one on p, one on p.right, and one on p.right.right (see Fig. 7). After this, p may
generally be at the top of a right-leaning chain consisting of p followed by four red nodes.
To remedy this, we perform two splits, one at p, and the other to its right-right grandchild,
which becomes its right child after the first split (see Fig. 7). Whew! These splits may not be
needed, but remember that the split function only modifies the tree if needed. The restruc-
turing function, called fixAfterDelete, is presented in the following code fragment. As an
exercise, you might draw the equivalent 2-3 tree both before and after the deletion. Note that
tree you get by following the 2-3 tree deletion algorithm may not agree with the tree you get
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by following the AA-tree deletion algorithm

AA-Tree Deletion Utility
AANode fixAfterDelete(AANode p) {

updateLevel(p); // update p’s level

p = skew(p); // skew p

p.right = skew(p.right); // ...and p’s right child

p.right.right = skew(p.right.right); // ...and p’s right-right grandchild

p = split(p); // split p

p.right = split(p.right); // ...and p’s (new) right child

return p;

}
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Fig. 7: Example of AA-tree deletion. (Remember, a node is red if it is at the same level as its
parent.)

Tracing an Example: Let’s trace through the steps taken in the deletion process of Fig. 7. After
deleting the leaf node 1, we return to node 2. We first invoke updateLevel(2). Because its
left child (now nil) is at level 0, this pulls 2 down to level 1. Next, we apply the three skews
and two skews at the subtree rooted at 2, but everything is fine in this subtree, and none of
the rotations are triggered. So, we return from 2 up to node 4.

Now, 4’s left child (2) is at level 1, which pulls 4 down to level 2, and in the process, its right
child (13) is pulled down as well. Now we have a mess consisting of nodes 4, 6, 9, 13, and
16 all at level 2. The node p points to the top node (4). First, we invoke skew(p) (at 4),
but since 4’s left child is a level lower, this does nothing. Next, we invoke skew(p.right)

(at 13). This performs a right rotation at 13, which pulls 6 up as 4’s new right child, and
now 13 is p.right.right and its left child is 9. Next, we invoke skew(p.right.right) (13).
This performs a right rotation at 13, which pulls 9 up as 6’s new right child, and now 13 is
p.right.right.right.
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Now that we are done with the skews, we next invoke split(p) (4). This performs a left
rotation at 4 and pushes 6 up to level 3. The split operation returns 6 which is assigned to
p. We next invoke split(p.right) (9). This performs a left rotation at 9 and pushes 13 up
to level 3, as the new right child of 6.

We finally return the current value of p (6) to the calling procedure. However, the calling pro-
cedure was the initial call, namely root = delete(1, root). Therefore, node 6 is assigned
as the new root of the tree, and we are done.

Deletion Code: Finally, we can present the full deletion code. It looks almost the same as the
deletion code for the standard binary search tree, but after deleting the leaf node, we invoke
fixAfterDelete to restructure the tree. We will omit the (messy) details showing that after
this restructuring, the tree is in valid AA-form. (We refer you to Anderson’s original paper.)

AA Tree Deletion
AANode delete(Key x, AANode p) {

if (p == nil) // fell out of tree?

throw KeyNotFoundException; // ...error - no such key

else {

if (x < p.key) // look in left subtree

p.left = delete(x, p.left);

else if (x > p.key) // look in right subtree

p.right = delete(x, p.right);

else { // found it!

if (p.left == nil && p.right == nil)// leaf node?

return nil; // just unlink the node

else if (p.left == nil) { // no left child?

AANode r = inorderSuccessor(p); // get replacement from right

p.copyContentsFrom(r); // copy replacement contents here

p.right = delete(r.key, p.right); // delete replacement

}

else { // no right child?

AANode r = inorderPredecessor(p); // get replacement from left

p.copyContentsFrom(r); // copy replacement contents here

p.left = delete(r.key, p.left); // delete replacement

}

}

return fixAfterDelete(p); // fix structure after deletion

}

}

Analysis: All of these algorithms take O(1) time per level of the tree, which implies that the
running time of all the dictionary operations is O(h) where h is the height of the tree. As we
saw abow, the tree’s height is O(log n) height, which implies that all the dictionary operations
run in O(log n) time.
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