
CMSC 420 Dave Mount

CMSC 420: Lecture 14
Randomized Search Structures: Skip Lists

More Randomized Search Structures: In this lecture we discuss a randomized approach to
designing efficient data structures. A randomized data structure uses a random number gen-
erator to guide its operations and structure. The running time for any given input is expressed
in terms of the expected running time, which is averaged over all possible outcomes of the
algorithm’s random choices.

Note that unlike the expected-case performance of unbalanced binary search trees, which
depended on the order of operations, the expectation here is independent of what the user
does, only on the random number generator. Since the random number generator is not under
the control of the data structure’s user, even a malicious user cannot engineer a sequence of
operations that will guarantee a higher than expected running time. The only thing that
could go wrong is having bad luck with respect to the random number generator.

In this lecture we will discuss a data structure that is reputed to be among the fastest data
structures for ordered dictionaries, called the skip list. (It also has the feature that it was
designed by Bill Pugh, a former professor at the University of Maryland!)

Skip Lists: Skip lists began with the idea, “how can we make sorted linked lists better?” It is
easy to do operations like insertion and deletion into linked lists, but it is costly to locate
items efficiently because we have to walk through the list one item at a time. If we could
“skip” over multiple of items at a time, however, then we could perform searches efficiently.
Intuitively, a skip list is a data structure that encodes a collection of sorted linked lists, where
links skip over 2, then 4, then 8, and so on, elements with each link.

To make this more concrete, imagine a linked list, sorted by keys. There are two nodes at
either end of the list, called head and tail. Take every other entry of this linked list (say the
even numbered entries) and extend it up to a new linked list with 1/2 as many entries. Now
take every other entry of this linked list and extend it up to another linked with 1/4 as many
entries as the original list, and continue this until no elements remain. The head and tail

nodes are always lifted (see Fig. 1). Clearly, we can repeat this process ⌈lg n⌉ times. (Recall
that “lg” denotes log base 2.)

The result is something that we will call the ideal skip list. Unlike the standard linked list,
where you may need to traverse O(n) links to reach a given node, in this list any node can
be reached with O(log n) links from the head.

2 10 13 22
8 19

11
25

head tail

∞

0

1

2

3

4

5

Fig. 1: The “ideal” skip list.

The philosophy in searching/processing is to operate at the highest level possible and drop
down only when needed. To perform the operation find(x), we start at the highest level of

Lecture 14 1 Spring 2023

CMSC 420 Dave Mount

head. We scan linearly along the list at the current level i, until we are about to jump to
an node whose key value is strictly greater than to x. Since tail is associated with ∞, we
will always succeed in finding such a node. Let p point to the node just before this step. If
p’s data value is equal to x then we stop. Otherwise, if we are not yet at the lowest level, we
descend to the next lower level i− 1 and continue the search there. Finally, if we are at the
lowest level and have not found x, we announce that the x is not in the list (see Fig. 2).

2 10 13 22
8 19

11
25

head tail
find(22)

∞

0

1

2

3

4

5

Fig. 2: Searching the ideal skip list.

How long would this search require in the worst case? Observe that we need never traverse
more than one link at any given level in the path to the desired node. (Convince yourself that
this is true.) We will generally need to access two nodes at each level, however, because the
need to determine the node whose key is greater than x’s. As mentioned earlier, the number
of levels is ⌈lg n⌉. Therefore, the total number of nodes accessed is at most 2 ⌈lg n⌉ = O(log n).

Randomized Skip Lists: Unfortunately, like a perfectly balanced binary tree, the ideal skip list
is too pure for use as a dynamic data structure. As soon as a single node was added to the
middle of the lists, all the heights following it would need to be modified. But we can relax
this requirement to achieve an efficient data structure. In the ideal skip list, every other node
from level i is extended up to level i+ 1. Instead, how about if we did this randomly?

Following the “ideal” skip list, we would like roughly half of the entries at any given level to
survive and contribute to the next higher one. We can control this through a random process.

Suppose that we have built the skip list up to some level i, and we want to extend this to
level i + 1. Imagine every node at level i tossing a coin. If the coin comes up heads (with
probability 1/2) this node promotes itself to level i+ 1, and otherwise it stops here. By the
nature of randomization, the expected number of nodes at level i+1 will be half the number
of nodes at level i. Thus, the expected number of nodes at any level i will be n/2i, which
means that the expected number of nodes at level ⌈lg n⌉ is a constant. Fig. 3 shows what
such a randomized skip list, or simply skip list, might look like.

25

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5

Fig. 3: A (randomized) skip list.

Lecture 14 2 Spring 2023

CMSC 420 Dave Mount

Implementation: As we saw with 2-3 and 2-3-4 trees, skip lists have variable sized nodes. In the
skip list, there is no a priori limit on a node’s size. This is not an issue in languages like Java,
where it is easy to dynamically allocate arrays of arbitrary length, however. For example, our
skip list node might have the following structure

Node in a Skip List
class SkipNode {

Key key // key (for searching)

Value value // value (used by the application)

SkipNode[] next // array of next pointers (depending on level)

SkipNode(Key x, Value v, int size) { // constructor (given node size)

key = x; value = v; next = new SkipNode[size];

}

}

Here is sample code to find a key in a Skip list. Notice it is very simple (and does not involve
recursion!) Intuitively, we start at the topmost nonempty level of the skip list, and keep
moving along a given level as long as the key in the next node is less than or equal to the key
we are looking form. Whenever we get stuck, we drop down a level. When we drop out of
the skip list (level is less than zero), we know that the current node’s key is at most x and
the next node’s key is strictly greater than x. So, we check this node’s key matches, and if
so, we have found it. If so, we drop down a level. We stop when we fall below level zero. If
the key is in the skip list, the last node visited will match. Otherwise, the find fails.

Find in a Skip List
Value find(Key x) {

int i = topmostLevel // start at topmost nonempty level

SkipNode p = head // start at head node

while (i >= 0) { // while levels remain

if (p.next[i].key <= x) p = p.next[i] // advance along same level

else i-- // drop down a level

}

return (p.key == x ? p.value : null) // return value if found

}

Height and Space Analysis: Unlike binary search trees whose nodes are all of the same size,
the nodes of a skip list have variable sizes. How many levels will the skip list have? The
process we described earlier could create an arbitrarily large number of levels (if your coin
keeps coming up heads). We can show that the maximum level in the skip list will be O(log n)
with high probability.

Theorem: The expected number of levels in a skip list with n entries is O(log n). Moreover,
for any c ≥ 1, the probability that the number of levels exceeds c lg n is at most 1/nc−1.

Proof: The intuitive explanation for the expected bound is easy: With every new level, we
cut the number of remaining entries (in expectation) by half. After doing this lg n times,
we would expect there to be only one item left.

Let’s consider the probability of exceeding the “ideal” value of lg n by a factor of c ≥ 1.
Suppose that we have n entries and we observe that our skip list contains at least one

Lecture 14 3 Spring 2023

CMSC 420 Dave Mount

node at level ℓ. In order for an arbitrary entry to make it to level ℓ, its coin toss came
up heads at least ℓ times consecutively. The probability of this happening is clearly at
most 1/2ℓ. Since this holds independently for all of the n entries, the probability that
any of the entries survives to level ℓ is at most the n-fold sum 1

2ℓ
+ 1

2ℓ
+ 1

2ℓ
+ · · · = n

2ℓ
.

Setting ℓ = c · lg n, it follows that the probability that the maximum level exceeds ℓ is
at most

n

2ℓ
=

n

2c lgn
=

n

(2lgn)c
=

n

nc
=

1

nc−1
.

Observe that if we take even moderate values of c and n, say c = 3 and n = 1000, the
probability that the maximum height exceeds 3 lg n is at most 1/n2 = 1/1, 000, 000, that is,
one chance in a million. The chances of exceeding it by a factor of 5 is less than one in a
trillion!

This implies that, if you have an upper bound on the value of n, you are safe (with high
probability) to allocate head and tail arrays of size ⌈3 lg n⌉. Of course, even if a node were to
attempt to exceed this level, you could just arbitrarily limit it. The asymptotic analysis that
follows would not change as a result.

Next, let’s consider the storage space. Under the assumption that the maximum number of
levels is O(log n), then in the worst case every node contributes to every level, and the skip
list would have total storage of O(n log n). This is too high! The following lemma indicates
that the expected space used is just linear in n.

Theorem: The expected storage for a skip list with n entries is O(n).

Proof: For i ≥ 0, let ni denote the number of nodes that contribute to level i of the skip
list. This is a random variable, meaning that its value varies with our random choices.
The quantity that we are interested in is its expected value E(ni). The probability that
an arbitrary entry contributes to level i, is just the probability of tossing i consecutive
heads using a fair coin, which is clearly 1/2i. Thus, the expected number of entries
that survive to this level is just the total population size (n) times the probability of
contributing (1/2i). Thus, E(ni) = n/2i.

Let L denote the maximum level in our skip list. By basic facts on the geometric series,
we know that 1 + 1

2 + 1
4 + 1

8 + · · · = 2, and hence

L∑
i=0

E(ni) ≤
∞∑
i=0

E(ni) =
∞∑
i=0

n

2i
= n

∞∑
i=0

1

2i
= 2n.

Finally, by the linearity of expectation (the expected value of a sum of random variables
is the sum of the expected values of the random variables), it follows that the total
expected storage needed is the sum of E(ni) over all possible levels

E

(
L∑
i=0

ni

)
≤ E

(∞∑
i=0

ni

)
=

∞∑
i=0

E(ni) = 2n = O(n),

and this completes the proof.

The above result may be a bit surprising. (After all, if the maximum level is O(log n), then
shouldn’t the space be O(n log n)?) The key is that the vast majority of entries never make
it beyond the first few levels. For example, less than 10% make it beyond level 4, and less
than 1% make it beyond level 7.

Lecture 14 4 Spring 2023

CMSC 420 Dave Mount

Search-Time Analysis: Earlier, we argued that the worst-case search time in an ideal skip list
is O(log n). Now, we will show that the expected case search time in the randomized skip list
will be O(log n). It is important to note that the analysis to follow will not depend on the
choice of keys in the data structure nor the order in which they were inserted. Rather, it will
depend solely on the randomized (coin-flipping) process used to build the data structure.

The analysis of skip lists is an example of a probabilistic analysis. As observed earlier, the
expected number of levels in a skip list is O(log n). We will show that for any fixed node, the
length of the search path leading here is O(log n) in expectation. Our analysis will be based
on walking backwards along the search path. (This is sometimes called a backwards analysis.)

Observe that the forward search path drops down a level whenever the next link would have
taken us “beyond” the node we are searching for. Thus, when we consider the reversed search
path, it will always take a step up if it can (i.e., if the node it is visiting contributes to the
next higher level), otherwise it will take a step to the left.

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5

25

find(25)

Fig. 4: The search path (blue) to x = 25 and the reverse search path (red).

Theorem: The expected number of nodes visited in a search in a skip list of n keys is
O(log n).

Proof: We will prove this for the more general case, where the probability that a node is
promoted to the next higher level is p, for some constant 0 < p < 1. The analysis for
our coin-flipping version of the skip follows by setting p = 1/2.

For 0 ≤ i ≤ O(log n), let E(i) denote the expected number of nodes visited in the skip
list at the top i levels of the skip list. (For example, in Fig. 4, the skip list’s top level
is 5. In this case E(2) would be the expected number of steps taken at levels 4 and 5,
E(3) would be the expected time spent in levels 3–5, and E(6) would be the expected
number of steps at all the levels.)

As mentioned above, our analysis is based on walking backwards along the search path.
Whenever we arrive at some node of level i, the probability that it contributes to the
next higher level is exactly p, and if so, the search path came from above. On the other
hand, with the remaining probability 1 − p, this node stopped at this level, and the
backwards search stays at the same level. Counting the current node we are visiting
(+1), we can express E(i) by the recurrence:

E(i) = 1 + p · E(i− 1) + (1− p)E(i).

This is a weird recurrence, because we are defining E(i) in terms of itself! But this is
not circular, since each subsequent invocation occurs with a lower probability value, and

Lecture 14 5 Spring 2023

CMSC 420 Dave Mount

so this converges. In particular, with a bit of algebra, we have:

E(i) =
1

p
+ E(i− 1).

By expansion, it is easy to verify that E(i) = i
p . Thus, if our skip list has ℓ levels, the

expected search time is E(ℓ) = ℓ/p. By our assumption that p is a constant, we have
E(ℓ) = O(ℓ). By our earlier theorem on the maximum number of levels, we know that
ℓ = O(log n). Therefore, the expected search time for skip lists is O(log n).

Clearly, there is more math involved in establishing expected-case bounds for randomized data
structures. (This is the bane of students of data structures!) The payoff is that these data
structures are usually faster than traditional structures because they are so simple. There is
no need for rotating nodes, merging or splitting nodes, skewing and splitting, as we have seen
with tree-based data structures.

Insertion and Deletion: Insertion into a skip list is almost as easy as insertion into a standard
linked list. Given a key x to insert, we first do a search on key x to find its immediate
predecessors in the skip list at each level of the structure. Next, we create a new node x. To
determine the height of this node, we toss a coin repeatedly until it comes up tails. (More
practically, we generate a random number until its parity is odd.) Letting k denote the
number of tosses needed, we create a node who height is the minimum of k + 1 and the
maximum height of the skip list. We then link this node in to its k + 1 lowest predecessors
in the list (see Fig. 5).

25

13

2 11 22
10 19

head tail

∞

0

1

2

3

4

5

252 11
10

head tail

∞

0

1

2

3

4

5

24

insert(24)

13

19
22

Fig. 5: Inserting a new key 24.

Deletion is quite similar. Again, we search for the node containing the key to delete, and we
keep track of all its predecessors at various levels in the skip list (see Fig. 6). On finding it
we unlink the node from each level, exactly as we would do in a standard linked-list deletion.
Both operations take O(log n) time in expectation.

Implementation Notes: One of the appeals of skip lists is their ease of implementation. Most
of procedures that operate on skip lists make use of the same simple code that is used for

Lecture 14 6 Spring 2023

CMSC 420 Dave Mount

12

7 13
5

head tail

∞

0

1

2

3

4

2 15

13

head tail

∞

0

1

2

3

4

2 15
5

7

12

delete(12)

Fig. 6: Deleting key 12.

linked-list operations. One additional element is that you need to keep track of the level that
you are currently on when performing searching.

Skip-list nodes have variable size, which is a bit unusual. This is not a problem in program-
ming languages like Java that allow us to dynamically allocated arrays of variable size. Thus,
each node of the skip list will generally contain the key-value pair associated with this entry,
a variable-sized array of next pointers (so that p.next[i] points to the next node in the skip
list from node p at level i). Finally, the structure has two special “sentinel nodes, ” head and
tail. We assume that tail.key is set to some incredibly large value so that searches always
stop here.

Overall Performance: From a practical perspective, skip lists can do pretty much everything
that standard binary trees structures can do. In expectation, they require O(n) storage
space, and all dictionary operations can be performed in time O(log n) in expectation. Given
their simple linear structure, they are arguably easier to visualize and program. Experimental
studies show that skip lists are among the fastest data structures for sorted dictionaries (with
treaps). This is largely because the power of randomization keeps us from having to maintain
more complex balance information, and thus simplifies the code and processing.

Lecture 14 7 Spring 2023

