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CMSC 420: Lecture 17
Treaps

Randomized Data Structures: A common design technique in the field of algorithm design
involves the notion of using randomization. A randomized algorithm employs a pseudo-
random number generator to inform some of its decisions. Randomization has proved to be
a remarkably useful technique, and randomized algorithms are often the fastest and simplest
algorithms for a given application. In the case of data structures, randomization affects the
balance of the structure, and hence the running time. The results are guaranteed to be
correct.

In an earlier lecture, we have already seen an example of a randomized data structure in the
form of the skip list. In this lecture, we will consider another one, called the treap.

Background: This treap data structure’s name is a portmanteau (combination) of “tree” and
“heap.” It was developed by Raimund Seidel and Cecilia Aragon in 1989. (This 1-dimensional
data structure is closely related to two 2-dimensional data structures, the Cartesian tree by
Jean Vuillemin and the priority search tree of Edward McCreight, both discovered in 1980.)

Because the treap is a randomized data structure, its running time depends on the random
choices made by the algorithm. We will see that all the standard dictionary operations take
O(log n) expected time. The expectation is taken over all possible random choices that the
algorithm may make. You might be concerned, since this allows for rare instances where the
running time can be is very bad. While this is always a possibility, a more refined analysis
shows that (assuming n is fairly large) the probability of poor performance is so insanely
small that it is not worth worrying about.

Treaps: The intuition behind the treap is easy to understand. Recall back when we discussed stan-
dard (unbalanced) binary search trees that if keys are inserted in random order, the expected
height of the tree is O(log n). The problem is that your user may not be so accommodating
to insert keys in this order. A treap is a binary search tree whose structure arises “as if” the
keys had been inserted in random order.

Huh? How is that possible? Let’s recall how standard binary tree insertion works. When a
new key is inserted into such a tree, it is inserted at the leaf level. If we were to label each
node with a “timestamp” indicating its insertion time, as we follow any path from the root
to a leaf, the timestamp values must increase monotonically (see Fig. 1(b)). We know of a
data structure that has this very property—a heap!

This suggests the following simple idea: When first inserted, each key is assigned a random
priority, call it p.priority. As in a standard binary tree, keys are sorted according to an
inorder traversal. But, the priorities are maintained according to heap order. Since the
priorities are random, it follows that the tree’s structure is consistent with a tree resulting
from a sequence of random insertions. Thus, we have the following:

Theorem: A treap storing n nodes has heightO(log n) in expectation. (Here, the expectation
is over all n! possible orderings of the random priorities present in the tree.)

Since priorities are random, you might wonder about possibility of two priorities being equal.
This might happen, but if the domain of random numbers if much larger than n (say at least
n2) then these events are so rare that they won’t affect the tree’s performance. We will show
that it is possible to maintain this structure quite easily.
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Fig. 1: (a) A binary search tree and (b) associating insertion timestamps with each node.

Geometric Interpretation: While Seidel and Aragon designed the treap as a 1-dimensional
search structure, the introduction of numeric priorities suggests that we can interpret each
key-priority pair as a point in 2-dimensional space. We can visualize a treap as a subdivision
of 2-dimensional space as follows. Place all the points in rectangle, where the y-coordinates
(ordered top to bottom) are the priorities and the x-coordinates are the keys, suitably mapped
to numbers (see Fig. 2). Now, draw a horizontal line through the root. Because there are no
points of lower priority, all the other points lie in the lower rectangle. Now, shoot a vertical
ray down from this point. This splits the rectangle in two, with the points of the left subtree
lying in the left rectangle and the points of the right subtree lying in the right rectangle.
Now, repeat the process recursively on each of the two halves.

(a)

1
k

2
e

4
o

8
m

5
f

6
h

3
b

10
a

9
c

7
w

11
s

Timestamp: y

Key: x

a b c e f h k m o s w

1
2
3
4
5
6
7
8
9
10
11

(b)

Treap
Geometric interpretation

(e,2)
(k,1)

(o,4)(b,3)

(f,5)

(w,7)

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Fig. 2: (a) A treap and (b) geometric interpretation as a (randomized) priority search tree.

The resulting subdivision is used by a geometric data structure called the priority search tree,
which can be used for answering various geometric range-searching queries in 2-dimensional
space.

Treap Insertion: Insertion into the treap is remarkably simple. First, we apply the standard
binary-search-tree insertion procedure. When we “fall out” of the tree, we create a new node
p, and set its priority, p.priority, to a random integer. We then retrace the path back up to
the root (as we return from the recursive calls). Whenever we come to a node p whose child’s
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priority is smaller than p’s, we apply an appropriate single rotation (left or right, depending
on which child it is), thus reversing their parent-child relationship. We continue doing this
until the newly inserted key node is lifted up to its proper position in heap order. The code
is very simple and is given below. Beware: This is different from the sift-up operation used
in the heap data structure. Rotations are needed to maintain the key ordering.
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Fig. 3: Treap insertion.

Why Not Sift? You might recall that when working with binary heaps, we used operations
sift-up and sift-down to put nodes in proper heap order. Why not here? The issue is
that these operations do not preserve the inorder ordering of keys required by all binary
search trees.

Treap Deletion (Replacement approach): Deletion is also quite easy, but as usual it is a bit
more involved than insertion. If the deleted node is a leaf or has a single child, then we can
remove it in the same manner that we did for binary trees, since the removal of the node
preserves the heap order. However, if the node has two children, then normally we would
have to find the replacement node, say its inorder successor and copy its contents to this
node. The newly copied node will then be out of priority order, and rotations will be needed
to restore it to its proper heap order. (The code presented at the end of the lecture notes
uses this approach.)

Treap Deletion (Adjustment approach): Here is another approach for performing deletions,
which is a bit slower in practice but is easier to describe. We first locate the node in the tree
and then set its priority to ∞ (see Fig. 4). We then apply rotations to “sift it down” the tree
to the leaf level, where we can easily unlink it from the tree.
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Fig. 4: Treap deletion.

Performance: As mentioned above, a treap behaves in the same manner as an unbalanced binary
search tree. This means that the expected height is O(log n). In terms of constant factors,
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this is pretty close to 2 lnn ≈ 1.4 lg 2). Thus, all the dictionary operations are very fast. The
treap is particularly easy to implement because we never have to worry about adjusting the
priority fields. For this reason, treaps are among the fastest balanced tree-based dictionary
structures.

Implementation: We can implement a treap by modifying our implementation of other binary
search trees. First, the node structure is similar to that of a standard (unbalanced) binary
search tree, but we include the priority value, called priority:

Treap Node Structure
private class TreapNode {

Key key // key

Value value // value

final int priority // random priority (set on creation and never changed)

TreapNode left // left child

TreapNode right // right child

}

The right and left rotation functions are the same as for AVL trees (and we omit them). We
introduce three utility functions:

� getPriority(p): If p is not null it returns the node’s priority, and ∞ otherwise.

� lowestPriority(p): Returns the node p, p.left, and p.right with the lowest priority.

� restructure(p): Restructure the tree locally about p by rotating up a child having
lower priority than p.

Treap Restructuring Operations
int getPriority(TreapNode p) { return (p == null ? MAX_PRIORITY : p.priority) }

TreapNode lowestPriority(TreapNode p) { // lowest priority of p, p.left, p.right

TreapNode q = p

if (getPriority(p.left) < getPriority(q)) q = p.left

if (getPriority(p.right) < getPriority(q)) q = p.right

return q

}

TreapNode restructure(TreapNode p) { // restore priority at p

if (p == null) return p // nothing to do

TreapNode q = lowestPriority(p) // get child to rotate

if (q == p.left) p = rotateRight(p) // rotate as needed

else if (q == p.right) p = rotateLeft(p)

return p // return updated subtree

}

Insertion: The insert function has exactly the same form the insert function for standard (unbal-
anced) binary search trees, but it invokes restructure as it returns up the tree. Notice that
once we get to a node where a rotation is not needed, it will not be needed at any higher
node.
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Treap Insertion
TreapNode insert(Key x, Value v, TreapNode p) {

if (p == null) // fell out of the tree?

p = new TreapNode(x, v, Math.random()) // leaf with random priority

else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left) // ...insert left

else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right) // ...insert right

else

Error - Duplicate key!

return restructure(p) // restructure (if needed)

}

Deletion: As mentioned above, there are two approaches for deletion. We present the method
based on adjusting the key value to +∞ and rotating it down to the leaf. We first apply
the standard recursive process to locate the node containing the key to be deleted. When we
find it, we set its priority to +∞ and invoke the utility rotateDown, which rotates p down
to the the leaf level. This utility function finds the smaller of the two children and performs
a rotation to bring this child up and push p down. We then invokve the function recursively
on p.

TreapNode delete(Key x, TreapNode p) {

if (p == null) Error - Nonexistent key! // key not found

else {

if (x < p.key) p.left = delete(x, p.left) // delete from left

else if (x > p.key) p.right = delete(x, p.right) // delete from right

else { // found it!

p.priority = +INFINITY

return rotateDown(p)

}

}

return p

}

TreapNode rotateDown(TreapNode p) { // rotate p down to leaf

if (p.left == null && p.right == null) return null // leaf?...unlink it

else {

TreapNode q = lowestPriority(p) // get lower child

if (q == p.left) {

rotateRight(p) // rotate p down on right

q.right = rotateDown(p)

}

else {

rotateLeft(p) // rotate p down on left

q.left = rotateDown(p)

}

return q

}

}
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