
CMSC 420 Dave Mount

CMSC 420: Lecture 18
Tries and Digital Search Trees

Strings and Digital Data: In earlier lectures, we studied binary search trees, which store keys
from an ordered domain. Each node stores a splitter value, and we decide whether to visit the
left or right subtree based on a comparison with the splitter. Many times, data is presented
in digital form, that is, as a sequence of binary bits. These may be organized into groups,
for example as characters in a string. When data is presented in this form, an alternative
is to design trees that branch in a radix-based manner on these digital values. This can
be advantageous with respect to the data structure’s speed and the simplicity of performing
update operations. Generically, we refer to these structures as digital search trees. In this
lecture, we will investigate a few variations on this idea.

Tries: The trie (pronounced “try”) and its variations are widely used for storing string data sets.
Tries were introduced by René de la Briandais in 1959, and the term “trie” was later coined
by Edward Fredkin, derived from the middle syllable of the work “retrieval.” (It is said that
Fredkin pronounced it the same as “tree,” but it was changed to “try” to avoid confusion.)

Throughout, let Σ denote our set of symbols, which we call our alphabet. For example,
Σ = {a, b, . . . , z}. Let k = |Σ| denote the number of letters in our alphabet. In its simplest
form, each internal node of a trie has k children, one for each letter of the alphabet. We cast
each character to an integer in the range {0, . . . , k − 1}, which we can use as an index to an
array to access the next child. This way, we can search for a word of length m by visiting
m nodes of our tree. Let us also assume Java’s convention that we index the characters of a
string starting with 0 as the first (leftmost) character of the string. Given a string str, we
will refer to its leftmost character as str[0], and in Java this would be str.charAt(0).

An example is shown in Fig. 1, where we store a set of strings over the alphabet Σ = {a, b, c}
where a = 0, b = 1, and c = 2.

bcbb

aab

bcba

abcaba

a b c a b c

a b c

a b c

a b c

a b c

a b c

caa cab cac

a b c

cbc

a b c

a b c

Fig. 1: A trie containing the set {aab, aba, abc, bcba, bcbb, caa, cab, cac, cbc}.

We would like each distinct search path to terminate at a different leaf node. This is not
generally possible when one string is a prefix of another. A simple remedy is to add a special
terminal character to the end of each string. (Later, we will use $ as our terminal character,
but for now we will simply avoid storing keys where one is a prefix of another.)

The drawing shown in Fig. 1 is true to the trie’s implementation, but this form of drawing is
rather verbose. When drawing tries and other digital search trees, we will adopt the manner
shown below, where we label edges with the character. But remember that this is not a

Lecture 18 1 Spring 2023

CMSC 420 Dave Mount

different representation or a different data structure, it is just a different way of drawing the
tree.

bcbb

aab

bcba

abcaba caa cab cac cbc

a

a

b c

b

b a c

c

b

a b

c

ba

a b c

Fig. 2: Alternative (but equivalent) method of drawing the trie of Fig. 1.

Analysis: It is easy to see that we can search for a string in time proportional to the number
of characters in the string. This can be a significant savings over binary search trees. For
example, suppose that you wanted to store a dictionary of English words. A large dictionary
can have around 500,000 entries, and log2 500, 000 ≈ 19, but the length of the average English
word is well less than 10.

Space is an issue, however. In the worst case, the number of nodes in the data structure can
be as high as the total number of characters in all the strings. Observe, for example, that
if we have one key containing 100 characters, we must devote a search path for this string,
which will require 100 nodes and 100k total space, where k = |Σ|. Clearly, this is an absurd
situation, but it points to the main disadvantage of tries, namely their relatively high space
requirements. (By the way, if you wanted to perform exact-match searches, hashing would
be both more time and space efficient.)

de la Briandais Trees: One idea for saving space is to convert the k-order trie into a form that
is similar to the first-child/next-sibling representation that we introduced for multiway trees.
A node in this structure stores a single character. If the next character of the string matches,
we descend to the next lower level and advance to the next character of the search string.
Otherwise, we visit the next node at this same level. Eventually, we will either reach the
desired leaf node or else we will run off the end of some level. If the latter happens, then we
report that the key is not found. These are called de la Briandais trees (see Fig. 3).

bcbb

aab

bcba

abcaba caa cab cac cbc

== x

!= xx

b a c

ba

a b

c

b

ba

c

ba

a b c c

root

Fig. 3: A de la Briandais tree containing the same strings as in Fig. 1.

Lecture 18 2 Spring 2023

CMSC 420 Dave Mount

The de la Briandais tree trades off a factor of k in the space for a factor of k in the search
time. While the number of nodes can be as large as the total number of characters in all the
strings, the size of each node is just a constant, independent of k. In contrast, the search time
can be as high as O(k) per level of the tree, in contrast to O(1) per level for the traditional
trie.

Patricia Tries: One issue that arises with tries and digital search trees is that we may have long
paths where the contents of two strings are the same. Consider a very degenerate situation
where we have a small number of very long keys. F, that we have the keys “dysfunctional”
and “dysfunctioning” (see Fig. 4). The standard trie structure would have a long sequence
where there is no branching. This is very wasteful considering that each of these nodes
requires O(k) space, where k is the size of our dictionary.

g

f

s

y
d

n

a i

dysfunctional

nl

dysfunctioning

Fig. 4: Space wastage due to long degenerate paths in traditional tries storing “dysfunctional”
and “dysfunctioning”.

When keys are closely clustered (in the sense that they share lengthy common prefexes), digi-
tal search trees can suffer from this phenomenon. The solution is to perform path compression,
which succinctly encodes long degenerate paths. This is the idea behind a trie variant called
a patricia trie. (The word ‘patricia’ is an acronym for Practical Algorithm To Retrieve Infor-
mation Coded In Alphanumeric.) This concept was introduced in the late 1960’s by Donald
R. Morrison, and was independently discovered by Gernot Gwehenberger.

A patricia trie uses the same node structure as the standard trie, but in addition each node
contains an index field. This field is the index of the discriminating character, which is used
to determine how to branch at this node. This index field value increases as we descend the
tree. (A traditional trie can be viewed as a special case where this index increases by one
with each level.) In the patricia trie, the index field is set to the next index such where there
is a nontrivial split (that is, the next level where the node has two or more children). Note
that once the search path has uniquely determined the string of the set, we just store a link
directly to the leaf node. An example is shown in Fig. 5. Observe we start by testing the
0th character. All the strings that start with “e” are on the left branch from the root node.
Since they all share the next symbol in common, we continue the search with the character
at index 2.

As we did with standard tries, there is a more intuitive way of drawing patricia tries. Rather
than listing the index of the discriminating character using for branching, we instead list the
entire substring from the (see Fig. 6). This is convenient because we can read the substrings
from the drawing without having to refer back to the original strings. As in the previous case,
this is not a different representation or a different data structure, just a different drawing.

Lecture 18 3 Spring 2023

CMSC 420 Dave Mount

e ia

se

essence

subliminal

essential

0123456789...

estimate

estimation

sublease

sublimate

sublime

essence essential estimate estimation sublease sublimate sublime subliminal

tc ie

ts i

e

0

2

5 7

4

6

Fig. 5: A patricia trie for a set of strings. Each node is labeled with the index of the character and
each edge is labeled with the matching character for this branch.

e inalate

subles

essence essential estimate estimation sublease sublimate sublime subliminal

tialce ione

timatsen im

ease

Fig. 6: Alternative (but equivalent) method of drawing the patricia trie of Fig. 5.

Analysis: The patricia trie is superior to the standard trie in terms of both worst-case space
and worst-case query time. For the space, observe that because the tree splits at least two
ways with each node, and easy induction argument shows that the total number of nodes is
proportional to the number of strings (not the total number of characters in these strings,
which was the case for the standard trie). As with the standard trie, the worst-case search
time is equal to the length of the query string, but note that it may generally be much smaller,
since we only query character positions that are relevant to distinguishing between two keys
of the set.

Suffix trees: So far, we have been considering data structures for storing a set of strings. Another
common application involves storing a single, very long string, for which we want to perform
substring queries. For example, “Given the string “abracadabra”, how often does the sub-
string “ab” occur?” Such queries are useful in applications such as genomics, where queries
are applied to a genome sequence.

Consider a string S = “a0a1 . . . an−1$”, which we call the text. For 0 ≤ i ≤ n, define the
ith suffix to be the substring Si = “aiai+1 . . . an−1$”. We have intentionally placed a special
terminator character “$” at the end of the string so that every suffix is distinct from any
other substring appearing in S.

For each position i, 0 ≤ i ≤ n, there is a minimum length substring starting at index i that
uniquely identifies Si. For example, in the string “yabbadabbadoo$”, there are two suffixes
(S1 and S6) that start with “abbad”, and so this substring does not uniquely identify a
suffix. But there is only one suffix (namely S6) that starts with “abbado”, and therefore this
substring is minimum length unique identifier of a suffix.

To make this more formal, for 0 ≤ i ≤ n, define the ith substring identifier, denoted idi, to
be the shortest substring starting at index i that is unique among all substrings in the text
string. for position i. Note that because the end of string character is unique, every position
has a unique substring identifier. An example is shown in the following figure. The set of all

Lecture 18 4 Spring 2023

CMSC 420 Dave Mount

substring identifiers for this string are shown on the left side of Fig. 7.

A suffix tree for a text S is a patricia trie in which we store each of the n + 1 substring
identifiers for the string S. We illustrate this on the right side of Fig. 7. We have adopted
the convention from Fig. 6 for drawing the patricia trie. Each leaf of the tree is associated
with the suffix Si it identifies, and it is labeled with the associated index i.

y

0

1

abbada

bbada

bada

ada

da

abbado

0

1

2

3

4

5

6

bbado

bado

ado

do

oo

o$

$

7

8

9

10

11

12

13

Index Substring ID Index Substring ID

oa oa

dbbad

oa oa

badad oa $o
13

2

5

734 89

10 12

6

11

a
b d o y $

Fig. 7: A suffix tree for the string “yabbadabbadoo$”. (Labels are placed on the edges, but this
can be implemented using a standard trie or patricia trie.)

Efficient Construction: Generally, the size and construction time of a patricia trie are both
proportional to the total length of the strings being inserted. If you are given a text S of
length n, there are n suffixes of lengths 0, 1, 2, . . . , n. Thus, the total number of characters
over all suffixes is

∑n
i=1 i = O(n2). This would suggest that the suffix tree has size O(n2) and

takes O(n2) time to compute. While we will not present the proof, it can be shown that, due
to the the special structure of the suffix tree, it has O(n) size, and it can be built in O(n)
time.1

By the way, suffix trees are not usually the method of choice when storing suffix information.
There is a related data structure, called a suffix array, which encodes the same information
more succinctly (by a constant factor), and is the method that is usually used in practice
when answering the same sorts of queries.

Suffix-Tree Queries: As an example of answering a query, suppose that we want to know how
many times the substring “abb” occurs within the text string S. To do this we search for the
string “abb” in the suffix tree. If we fall out of the tree, then it does not occur. Otherwise the
search ends at some node u. The number of leaves descended from u is equal to the number
of times “abb” occurs within S.

In our example from Fig. 7, the search ends on the leftmost path in the tree, midway along
the edge labeled “bbad”. Since the subtree rooted here has two nodes, the answer to the
query is 2. By traversing the entire subtree, we can report that the two instances start at
indices 1 and 6. (Recall that we index the string starting with 0.)

Geometric Digital Search Trees: Before leaving the topic of digital search trees, we should
mention an interesting connection to geometric data structures. In an earlier lecture we
discussed point quadtree and point kd-trees as two ways of storing geometric point sets. We
can extend the idea of digital search trees to the geometric setting. We will do this in a
2-dimensional setting, but the generalization to arbitrary dimensions is straightforward.

1Recall that the size of a patricia tree is proportional to the number of strings, irrespective of their sizes. This
directly bounds the suffix tree’s size. The trick for constructing the tree efficiently is to start with the last suffix
Sn = “$” and work backwards to the first suffix, using the partially built tree to assist in the construction.

Lecture 18 5 Spring 2023

CMSC 420 Dave Mount

Our approach will be to define a transformation that maps a 2-dimensional point (x, y) into a
string, in a manner that preserves geometric structure. To do this, let us first assume that we
have applied a scaling transformation so our point coordinates lie within the interval [0, 1).
(For example, we can add a sufficiently large number that our coordinates are positive, and
then we can scale by dividing by the largest possible coordinate value.) By doing this, we
may assume that each point (x, y) satisfies 0 ≤ x, y < 1.

Our next step is to represent coordinate as a binary fraction. For example, the decimal point
(x, y) = (0.356, 0.753) can be represented in binary form as (0.01011 . . . , 0.11000 . . .). We can
treat the binary strings x = 01011 . . . and y = 11000 . . . as strings over the 2-symbol alphabet
Σ = {0, 1}.
But, how do we convert two coordinates into a single digital string? Recall that in kd-trees,
we alternated splitting on x and then y. This suggests that we can map two coordinates
x and y into a single binary string by alternating their binary bits. More formally, if x =
0.a1a2a3 . . . and y = 0.b1b2b3 . . . in binary, we create the binary string a1b1a2b2a3b3 In
our previous example, given our point (x, y) = (0.356, 0.753), we would interleave the bits
of their binary fractions to obtain the binary string “0111001010...”. We we refer to this
as the bit interleaving transformation. Let us apply this transformation to every point in
our 2-dimensional point data set. We can then store the resulting binary strings in a digital
search tree, like a patricia trie.

Wow! Is this crazy transformation from geometric data to digital data meaningful in any
way? It turns out that not only is meaningful, it actually corresponds to one of the most
fundamental geometric geometric data structures, called a PR kd-tree. In a 2-dimensional PR
kd-tree, we assume that the data lies within a square. Let’s assume that this square is our unit
square [0, 1)2. At the root, we split vertically through the midpoint of this square, creating
two children (West and East). Each child is associated with a rectangular cell. For each child,
if its cell contains two or more points, we split the cell horizontally through its midpoint into
two cells (South and North). We repeat the process, splitting alternately between x and y,
always splitting through the midpoint of the current cell, until the cell has either zero or one
points. An example of the resulting subdivision of space is shown in Fig. 8(a).

.00 .01

.1

.10 .11

.0

.00

.01

.10

.11

.0

.1

0 1x

0

1

y

x

y y

0 1

xx x x

0 01 1

SW NW SE NE

SW

NW

SE

NE

(a) (b) (c)

(0.356, 0.753)

Fig. 8: The PR kd-tree as a digital search tree using bit interleaving.

Observe that after two levels of splitting in our PR kd-tree, we have subdivided the original
square into four quadrants, each of half the side length of the original square. We can label

Lecture 18 6 Spring 2023

CMSC 420 Dave Mount

these SW, NW, SE, and NE (see Fig. 8(b)). Let’s consider what can be said about the
points lying in any one of these quadrants. For concreteness let’s consider the point with
coordinates (0.356, 0.753) in the NW quadrant (see Fig. 8(b)). Since it lies in this quadrant
we know that the leading bits of its x-coordinate is 0 (smaller than half) and the leading bit
of its y-coordinate is 1 (larger than half). Therefore, its digital code starts with “01...”.
Observe that our digital tree will put this point and all points in the NW quadrant into the
01 grandchild subtree of the root. It is easy to verify that each of the four grandchildren of
the root correspond to each of the four quadrants. Furthermore, as we descend the tree, with
each two levels, the digital search tree partitions the points into subtrees in exactly the same
manner as the PR kd-tree does.

In summary, the PR kd-tree data structure, is equivalent to a digital search tree for the points
after applying the bit-interleaving transformation! While we think of a patricia tree as a data
structure for storing strings, it turns out that this data structure can also be interpreted as
geometric data structure, and it can be used for answering most of the same queries (such as
orthogonal range and nearest neighbor queries) that the kd-tree can answer.

Lecture 18 7 Spring 2023

