Equivalence Relation:
- Given prime p, $a \equiv b \mod p$
- Given graph G, vertices u, v,
 $u \equiv v$ if in same connected component

Union-Find:
- Given set $S = \{1, 2, \ldots, n\}$ maintain a partition supporting ops:
 - $\text{Init}(x)$: Each element in its own set $\{1, 2, \ldots, n\}$
 - $\text{Union}(S, S')$: Merge two sets S, S' and replace with their union
 - $\text{Find}(x)$: Return the set containing x

Example:
- Suppose $S = \{1, 5, 3\}, \{2, 6, 8\}, \{3, 4, 7\}$
- $\text{Find}(S) \to S_1$, $\text{Find}(8) \to S_2$

Inverted-Tree Approach:
- Store elements of each set in tree with links to parent
 - Root node is set identifier

Example:
- Given $S = \{1, 3, 7, 10\}, \{2, 5, 6, 8, 11\}, \{4, 9\}$
- $\text{find}(s) = 1$

Array-Based Implementation:
- $\text{parent}[1..n]$, where $\text{parent}[i]$ is parent index or 0 if root

Examples:
- Given prime p, $a \equiv b \mod p$
 - Example: $p = 5$
- Given graph G, vertices u, v,
 $u \equiv v$ if in same connected component

Union-Find:
 - $\text{Init}(x)$: Each element in its own set $\{1, 2, \ldots, n\}$
 - $\text{Union}(S, S')$: Merge two sets S, S' and replace with their union
 - $\text{Find}(x)$: Return the set containing x

Example:
 - Suppose $S = \{1, 5, 3\}, \{2, 6, 8\}, \{3, 4, 7\}$
 - $\text{Find}(S) \to S_1$, $\text{Find}(8) \to S_2$

Inverted-Tree Approach:
 - Store elements of each set in tree with links to parent
 - Root node is set identifier

Example:
 - Given $S = \{1, 3, 7, 10\}, \{2, 5, 6, 8, 11\}, \{4, 9\}$
 - $\text{find}(s) = 1$
How to Union?

- Just link one tree under the other
- How to maintain low heights?
- Rank: Based on height of tree. Link lower rank as child

Disjoint Set Union-Find II

Simple Union-Find

Running Time?

- Init: \(O(n) \) - set a parents to null + ranks to 0
- Union: \(O(1) \) - constant time
- Find: \(O(\text{tree height}) \)

What is worst case?

We'll show tree height = \(O(\log n) \)

Cases:

1. \(h' = h'' \)
2. \(h' < h'' \)
3. \(h' > h'' \) (symmetrical)

Final tree height:

- \(h = \frac{h' + h'' + 1}{h' + h''} \)

Final size:

- \(n = n' + n'' \)
- \(2h + 2 = 2h' + 2h'' = 2h' + 2h'' = 2h' \)

Cases:

1. \(n < 2h' \)
2. \(n = 2h' \)
3. \(n > 2h' \)
Path Compression:
- Whenever we perform find, shortcut the links so they point directly to root.
- This does not increase running big more than constant, but can speed up later finds.

Simple Union-Find performs a sequence of m Union-Finds on set of size n in $O(m \log m)$ time.
\Rightarrow Amortized time (average per op) is $O(\log m)$.
\Rightarrow Amortized time = $O(a(m,n))$

Amortized time = $O(a(m,n))$.
[For all practical purposes, this is constant time.]

Theorem: (Tarjan 1975) After init. any seq of m Union-Finds (with path compression) takes total time $O(m \alpha(m,n))$.

Example:
This is why rank + height

Disjoint Set Union-Find III

Digression: Ackerman's Function
(1926) Primitive Rec Func.

for $i,j \geq 0$
$$A(i,j) = \begin{cases} j+1 & \text{if } i = 0 \\ A(i-1,1) & \text{if } i > 0, j = 0 \\ A(i-1, A(i,j-1)) & \text{otherwise} \end{cases}$$

Looks innocent, but it's a monster!

From super big to super small
Inverse of Ackerman
$$\alpha(m,n) = \min \{ i \geq 1 | A(i, \lceil m/n \rceil) > \log m \}$$

Obs: $\alpha(m,n) \leq 4$ for any imaginable values of m,n ($m \geq n$)

$\alpha(m,n)$ represents m universal

Digression: Ackerman's Function

Worst case - No. Find may take $O(\log n)$ time.
\Rightarrow Amortized - Yes! Huge improvement!
(But hard to prove)
Announcements: Tue 2/7
- Programming Assignment due tomorrow 11:59 pm
- Homework 1 - out soon (preliminary)
 - Due: Tue, Feb 21, start of class
 → No late submissions
 - Basic data structures
 (+ amortization)
 - Trees
 - Union-find
 - Heaps (next)

How fast?

\[n^2 \rightarrow \sqrt{n} \]

\[2^n \rightarrow \lg n \]

\[2^n \rightarrow \lg \lg n \leq 6 \]

\[\log^* n \]

\[\frac{\text{# particles}}{\text{universe}} \leq \frac{1}{250} \]

\[2^{250} \]

\[\frac{\text{Invers} \text{ Ackerman}}{\text{Ackerman Func}} \]