Kd-Trees:
- Partition trees
- Orthogonal split
- Alternate cutting dimension $x,y,x,y,...$
- Cells are axis-aligned rectangles (AABB)

Queries?
- Orthogonal range queries
 - Given query rect. (AABB) count/report pts in this rect.
 - Other range queries?
 - Circular disks
 - Halfplane
- Nearest neighbor queries
 - Given query pt, return closest pt in the set
 - Find kth closest point
 - Find farthest point from q

Kd-Tree Queries
- Axis-Aligned Rect in \mathbb{R}^d
 - Defined by two pts: $low, high$
 - Contains pt $q \in \mathbb{R}^d$ iff
 - $low_i \leq q_i \leq high_i$

Useful methods:
- Let $r,c - \text{Rectanglu}$
- $q - \text{Point}$
- $r \cdot \text{contains}(q)$
- $r \cdot \text{contains}(c)$
- $r \cdot \text{isDisjointFrom}(c)$

Rectangular methods for kd-cells:
- Split a cell r by a split pt $s \in r$, along cutdim cd
 - $r \cdot \text{leftPart}(cd,s)$
 - Returns rect with $low = r \cdot low$
 - $high = r \cdot high \text{ but } high[cd] \leftarrow s[cd]$
 - $r \cdot \text{rightPart}(cd,s)$
 - $high = r \cdot high + low = r \cdot low \text{ but } low[cd] \leftarrow s[cd]$

This Lecture: $O(n \log n)$ time alg.

for orthog range counting queries in \mathbb{R}^2

General \mathbb{R}^d: $O(n^{1-1/d})$
Orthog. Range Query

- Assume: Each node p stores:
 - $p.pt$: splitting point
 - $p.cutDim$: cutting dim
 - $p.size$: no. of pts in p's subtree
- Tree stores ptr. to root and bounding box for all pts.
- Recursive helper stores current node p + p's cell: root

Cases:
- $p == null$ → fell out of tree → 0
- Query rect is disjoint from p's cell → R
 - return 0
 - no point of p contributes to answer
- Query rect contains p's cell → return $p.size$
 - every point of p's subtree contributes to answer
- Otherwise:
 - $Rect + cell$ overlap → Recurse on both children

Kd-Tree Queries II

```
class Rectangle2D {
    private Point low, high
    public Rect (Point l, Point h) {
        boolean contains(Point q) {
            boolean contains(Rect c) {
                Rect leftPart (int cd, Points)
                Rect rightPart ("", ", ")
            }
        }
    }
} 
```

int rangeCount(Rect R, KDNode p, Rect $cell$) {
 if ($p == null$) return 0 // fell out of tree
 else if (R is Disjoint From ($cell$)) return 0 // overlap
 else if (R.contains($cell$)) return $p.size$ // take all
 else { int $ct = 0$ // partial overlap
 if (R.contains($p.pt$)) $ct++$ // p pt in range
 $ct += rangeCount(R, p.left, cell.leftPart(p.cutDim, p.pt))$
 $ct += rangeCount(R, p.right, cell.rightPart...)
 }
 return ct
}
Announcements 3/28
- Midterm: Almost done
- Prog Assign 2
 Part 1 (20%) - due Wed Apr 5
 Part 2 (80%) - due Wed Apr 19
Programming Assignment 2: Sliding Midpoint kd-Tree

- Extended binary tree
 - Internal nodes: split but no data
 - External nodes: data but no splitting

- Sliding midpoint splitting rule
 - Splitting rule for squares

- But: Two exceptions
 - If all pts are equal along cut dimension: flip to other
 - If all pts on same side of midpoint: slide splitting plane to closest point

- Rebalancing
 - Whenever the number of insertions grows too large (~ half size of subtree)
 rebuild the entire subtree from scratch.
 - How?
 - Traverse subtree + put points in an ArrayList
 - BulkCreate Build tree recursively by applying sliding midpoint
insert: DFW, DCA, LAX, SEA