Orthogonal Range Query
Assume: Each node p stores:
- $p.pt$: splitting point
- $p.cutDim$: cutting dim
- $p.size$: no. of pts in p's subtree
- Tree stores ptr. to root and bounding box for all pts.
- Recursive helper stores current node p's cell

Cases:
- $p == null$ → fell out of tree → 0
- Query rect disjoint from p's cell → 0
 - return 0
 - no point of p contributes to answer
- Query rect contains p's cell → $p.size$
 - every point of p's subtree contributes to answer
- Otherwise:
 - Rect. + cell overlap → Recurse on both children

Kd-Tree Queries II

$$\text{class Rectangle}{\{}$$

private Point low, high
public Rect (Point l, Point h)
 " boolean contains(Point q)"
 " boolean contains(Rect c)"
 " Rect leftPart (int cd, Points)"
 " Rect rightPart ("", "")"

$$\text{\}}$$

```java
int rangeCount(Rect $R$, KDNode $p$, Rect cell)
if ($p == null$) return $0$ // fell out of tree
else if ($R.isDisjointFrom(cell)$) return $0$ // overlap
else if ($R.contains(cell)$) return $p.size$ // take all
else {
  int $ct = 0$ // partial overlap
  if ($R.contains(p.pt)$) $ct += p.size$ // $p$ pt in range
  $ct += rangeCount(R, p.left, cell.leftPart(p.cutDim, p.pt))$
  return $ct$
}
```
Theorem: Given a balanced kd-tree storing n pts in \mathbb{R}^2 (using alternating cut dim), orthog. range queries can be answered in $O(n^{1/2})$ time.

Analysis: How efficient is our algorithm?
- Tricky to analyze
 - At some nodes we recurse on both children $\Rightarrow O(n)$ time?
 - At some we don't recurse at all!

Solving the Recurrence:
- Macho: Expand it
- Wimpy: Master Thm (CLRS)

Master Thm:
\[T(n) = aT(n/b) + f(n) \]

For $a = 2, b = 4, d = \log_2 4 = 2$,
\[T(n) = n^{\log_2 4} = n^2 \]

Since tree is balanced a child has half the pts + grandchild has quarter.

Recurrence: $T(n) = 2 + 2T(n/4)$
Recursively, $T(n) = 2 + T(n/4)$
Each half of n gets recursed. $T(n) = n^{\log_2 4} = n^2$
If we consider 2 consecutive levels of kd-tree, l stabs at most 2 of 4 cells:

Lemma: Given a kd-tree (as in Thm above) and horiz. or vert. line l, at most $O(n^{1/2})$ cells can be stabbed by l.

Proof: w.l.o.g. l is horiz.
Cases: p splits vertically

Stabbing: 3 cases
- cell is disjoint (easy)
- cell is contained (easy)
- cell partially overlaps or is stabbed by the query range (hard!)

Kd-Tree Queries

Orthog. range queries can be answered in $O(n^{1/2})$ time.

How many cells are stabbed by R? (worst case)
Simpler: Extend R's sides to 4 lines and analyze each one.
Scapegoat Trees:
- Arne Anderson (1989)
- Galperin + Rivest (1993) rediscovered/extended
- Amortized analysis - $O(\log n)$ for dictionary ops amortized (guaranteed for find)
 - Just let things happen
 - If subtree unbalanced - rebuild it

Recap:
- Seen many search trees
- Restructure via rotation
- Today: Restructure via rebuilding

 - Sometimes rotation not possible
 - Better mem. usage

Example:

```
A: 0 1 2 3 4 5
```

```
P: b
a
```

```
j = \left\lceil \frac{k}{2} \right\rceil = 3
```

```
Time = O(k)
```

Overview:
Insert:
- Same as standard BST
 - if depth too high \(\rightarrow \log n \)
 - trace search path back
 - find unbalanced node - scapegoat
 - rebuild this subtree

Find:
- Same as std. BST
- Tree height \(\leq \log_{3/2} n \approx 1.71 \log n \)

Delete:
- Same as std. BST
- If num. of deletes is large rel. to \(n \) rebuild entire tree!

How? Maintain \(n, m \leftarrow 0 \)
Insert: \(n++; m++ \)
Delete: \(n--; \) \(m > 2n \) rebuild

How to rebuild? rebuild(p):
- Inorder traverse p's subtree \(\rightarrow \) array \(A[] \)

 - buildSubtree(A)

 - buildSubtree(A[0..k-1]):
 - if \(k = 0 \) return null
 - \(j \leftarrow \left\lceil \frac{k}{2} \right\rceil \); \(x \leftarrow A[j] \) median
 - \(L \leftarrow \) buildSubtree(A[0..j-1])
 - \(R \leftarrow \) buildSubtree(A[j+1..k-1])
 - return Node(x, L, R)
Announcements 3/30

- Midterm: Grades are published
 - Check out solutions before requesting regrades

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>A</td>
</tr>
<tr>
<td>80-90</td>
<td>B</td>
</tr>
<tr>
<td>60-80</td>
<td>C</td>
</tr>
<tr>
<td><60</td>
<td>D</td>
</tr>
</tbody>
</table>

- Prog Assign 2
 Part 1 (20%) - due Wed Apr 5
 Part 2 (80%) - due Wed Apr 19

- 4XX Info Session - 5pm in Gannon.

Rebuild offset

\[\text{Rebuild node } u \text{ when: } \]
\[u.\text{insert} t > u.\text{size} \frac{1}{2} + \text{rebuild offset} \]

\[\approx 5 - 10 \]
Quick-and-Dirty kd-Tree Analysis:

- Ideal case:
 - Uniformly distributed pts
 - kd-Tree subdivision ~ grid $\sqrt{n} \times \sqrt{n}$
 - How many grid squares stab the query range?

- Good for average case, not worst case
Programming Assignment 2: Sliding Midpoint kd-Tree

- Extended binary tree
 - internal nodes: split but no data
 - external nodes: data but no splitting

- Sliding midpoint splitting rule
 - Splitting rule for squares

- Cut-dim
 - which side of cell is longer (if tied use x (vertical))

- Cut-value
 - mid point by default

- But: Two exceptions

 - if all pts are equal along cut dimension - flip to other
 - if all pts on same side of mid point - slide splitting plane to closest point

- Rebalancing
 - Whenever the number of insertions grows too large (~ half size of subtree)
 rebuild the entire subtree from scratch.

- How?
 - Traverse subtree
 - BulkCreate - Build tree recursively by applying sliding mid point